Skip to main content
Log in

miR-145-5p targets paxillin to attenuate angiotensin II-induced pathological cardiac hypertrophy via downregulation of Rac 1, pJNK, p-c-Jun, NFATc3, ANP and by Sirt-1 upregulation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Pathological cardiac hypertrophy is associated with many diseases including hypertension. Recent studies have identified important roles for microRNAs (miRNAs) in many cardiac pathophysiological processes, including the regulation of cardiomyocyte hypertrophy. However, the role of miR-145-5p in the cardiac setting is still unclear. In this study, H9C2 cells were overexpressed with microRNA-145-5p, and then treated with Ang-II for 24 h, to study the effect of miR-145-5p on Ang-II-induced myocardial hypertrophy in vitro. Results showed that Ang-II treatment down-regulated miR-145-5p expression were revered after miR-145-5p overexpression. Based on results of bioinformatics algorithms, paxillin was predicted as a candidate target gene of miR-145-5p, luciferase activity assay revealed that the luciferase activity of cells was substantial downregulated the following co-transfection with wild paxillin 3′UTR and miR-145-5p compared to that in scramble control, while the inhibitory effect of miR-145-5p was abolished after transfection of mutant paxillin 3′UTR. Additionally, overexpression of miR-145-5p markedly inhibited activation of Rac-1/ JNK /c-jun/ NFATc3 and ANP expression and induced SIRT1 expression in Ang-II treated H9c2 cells. Jointly, our study suggested that miR-145-5p inhibited cardiac hypertrophy by targeting paxillin and through modulating Rac-1/ JNK /c-jun/ NFATc3/ ANP / Sirt1 signaling, therefore proving novel downstream molecular pathway of miR-145-5p in cardiac hypertrophy

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Crowley SD, Gurley SB, Herrera MJ, Ruiz P, Griffiths R, Kumar AP, Kim HS, Smithies O, Le TH, Coffman TM (2006) Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc Natl Acad Sci USA 103:17985–17990. https://doi.org/10.1073/pnas.0605545103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Paul M, Mehr AP, Kreutz R (2006) Physiology of local renin-angiotensin systems. Physiol Rev 86:747–803. https://doi.org/10.1152/physrev.00036.2005

    Article  CAS  PubMed  Google Scholar 

  3. Navar LG, Madias NE, Perrone R, Pak D (2004) The intrarenal renin-angiotensin system in hypertension. Kidney Int. https://doi.org/10.1111/j.1523-1755.2004.00539.x

    Article  PubMed  Google Scholar 

  4. Huang CY, Kuo WW, Yeh YL, Ho TJ, Lin JY, Lin DY, Chu CH, Tsai FJ, Tsai CH, Huang CY (2014) ANG II promotes IGF-IIR expression and cardiomyocyte apoptosis by inhibiting HSF1 via JNK activation and SIRT1 degradation. Cell Death Differ 21:1262–1274. https://doi.org/10.1038/cdd.2014.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bendall JK, Cave AC, Heymes C, Gall N, Shah AM (2002) Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 105:293–296. https://doi.org/10.1161/hc0302.103712

    Article  CAS  PubMed  Google Scholar 

  6. Nakamura M, Sadoshima J (2018) Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol 15:387–407. https://doi.org/10.1038/s41569-018-0007-y

    Article  CAS  PubMed  Google Scholar 

  7. Deng YF, Scherer PE (2010) Adipokines as novel biomarkers and regulators of the metabolic syndrome. Year Diabetes Obes 1212:E1–E19. https://doi.org/10.1111/j.1749-6632.2010.05875.x

    Article  Google Scholar 

  8. Rivera-Feliciano J, Lee KH, Kong SW, Rajagopal S, Ma Q, Springer Z, Izumo S, Tabin CJ, Pu WT (2006) Development of heart valves requires Gata4 expression in endothelial-derived cells. Development 133:3607–3618. https://doi.org/10.1242/dev.02519

    Article  CAS  PubMed  Google Scholar 

  9. Hu WS, Ting WJ, Tamilselvi S, Day CH, Wang T, Chiang WD, Viswanadha VP, Yeh YL, Lin WT, Huang CY (2019) Oral administration of alcalase potato protein hydrolysate-APPH attenuates high fat diet-induced cardiac complications via TGF-beta/GSN axis in aging rats. Environ Toxicol 34:5–12. https://doi.org/10.1002/tox.22651

    Article  CAS  PubMed  Google Scholar 

  10. Wassmann S, Laufs U, Baumer AT, Muller K, Konkol C, Sauer H, Bohm M, Nickenig G (2001) Inhibition of geranylgeranylation reduces angiotensin II-mediated free radical production in vascular smooth muscle cells: involvement of angiotensin AT1 receptor expression and Rac1 GTPase. Mol Pharmacol 59:646–654

    Article  CAS  PubMed  Google Scholar 

  11. Hsieh SR, Cheng WC, Su YM, Chiu CH, Liou YM (2014) Molecular targets for anti-oxidative protection of green tea polyphenols against myocardial ischemic injury. Biomedicine 4:23. https://doi.org/10.7603/s40681-014-0023-0

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ushio-Fukai M, Alexander RW, Akers M, Griendling KK (1998) p38 mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II—role in vascular smooth muscle cell hypertrophy. J Biol Chem 273:15022–15029. https://doi.org/10.1074/jbc.273.24.15022

    Article  CAS  PubMed  Google Scholar 

  13. Nakamura K, Fushimi K, Kouchi H, Mihara K, Miyazaki M, Ohe T, Namba M (1998) Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation 98:794–799

    Article  CAS  PubMed  Google Scholar 

  14. Sun T, Dong YH, Du W, Shi CY, Wang K, Tariq MA, Wang JX, Li PF (2017) The role of microRNAs in myocardial infarction: from molecular mechanism to clinical application. Int J Mol Sci. https://doi.org/10.3390/ijms18040745

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chistiakov DA, Orekhov AN, Bobryshev YV (2016) Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction). J Mol Cell Cardiol 94:107–121. https://doi.org/10.1016/j.yjmcc.2016.03.015

    Article  CAS  PubMed  Google Scholar 

  16. Piubelli C, Meraviglia V, Pompilio G, D’Alessandra Y, Colombo GI, Rossini A (2014) MicroRNAs and cardiac cell fate. Cells 3:802–823. https://doi.org/10.3390/cells3030802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yuan M, Zhang L, You F, Zhou J, Ma Y, Yang F, Tao L (2017) MiR-145-5p regulates hypoxia-induced inflammatory response and apoptosis in cardiomyocytes by targeting CD40. Mol Cell Biochem 431:123–131. https://doi.org/10.1007/s11010-017-2982-4

    Article  CAS  PubMed  Google Scholar 

  18. Wang X, Zhang Y, Wang H, Zhao G, Fa X (2017) MicroRNA-145 aggravates hypoxia-induced injury by targeting Rac1 in H9c2 cells. Cell Physiol Biochem 43:1974–1986. https://doi.org/10.1159/000484121

    Article  CAS  PubMed  Google Scholar 

  19. Aronow WS (2017) Hypertension and left ventricular hypertrophy. Ann Transl Med 5:310. https://doi.org/10.21037/atm.2017.06.14

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schaller MD (2001) Paxillin: a focal adhesion-associated adaptor protein. Oncogene 20:6459–6472. https://doi.org/10.1038/sj.onc.1204786

    Article  CAS  PubMed  Google Scholar 

  21. de Rie D, Abugessaisa I, Alam T, Arner E, Arner P, Ashoor H, Astrom G, Babina M, Bertin N, Burroughs AM, Carlisle AJ, Daub CO, Detmar M, Deviatiiarov R, Fort A, Gebhard C, Goldowitz D, Guhl S, Ha TJ, Harshbarger J, Hasegawa A, Hashimoto K, Herlyn M, Heutink P, Hitchens KJ, Hon CC, Huang E, Ishizu Y, Kai C, Kasukawa T, Klinken P, Lassmann T, Lecellier CH, Lee W, Lizio M, Makeev V, Mathelier A, Medvedeva YA, Mejhert N, Mungall CJ, Noma S, Ohshima M, Okada-Hatakeyama M, Persson H, Rizzu P, Roudnicky F, Saetrom P, Sato H, Severin J, Shin JW, Swoboda RK, Tarui H, Toyoda H, Vitting-Seerup K, Winteringham L, Yamaguchi Y, Yasuzawa K, Yoneda M, Yumoto N, Zabierowski S, Zhang PG, Wells CA, Summers KM, Kawaji H, Sandelin A, Rehli M, Hayashizaki Y, Carninci P, Forrest ARR, de Hoon MJL, Consortium F (2017) An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat Biotechnol 35(9):872–878. https://doi.org/10.1038/nbt.3947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Taylor JM, Rovin JD, Parsons JT (2000) A role for focal adhesion kinase in phenylephrine-induced hypertrophy of rat ventricular cardiomyocytes. J Biol Chem 275:19250–19257. https://doi.org/10.1074/jbc.M909099199

    Article  CAS  PubMed  Google Scholar 

  23. Chen DL, Wang DS, Wu WJ, Zeng ZL, Luo HY, Qiu MZ, Ren C, Zhang DS, Wang ZQ, Wang FH, Li YH, Kang TB, Xu RH (2013) Overexpression of paxillin induced by miR-137 suppression promotes tumor progression and metastasis in colorectal cancer. Carcinogenesis 34:803–811. https://doi.org/10.1093/carcin/bgs400

    Article  CAS  PubMed  Google Scholar 

  24. Qin J, Wang F, Jiang H, Xu J, Jiang Y, Wang Z (2015) MicroRNA-145 suppresses cell migration and invasion by targeting paxillin in human colorectal cancer cells. Int J Clin Exp Pathol 8:1328–1340

    PubMed  PubMed Central  Google Scholar 

  25. Carrizzo A, Forte M, Lembo M, Formisano L, Puca AA, Vecchione C (2014) Rac-1 as a new therapeutic target in cerebro- and cardio-vascular diseases. Curr Drug Targets 15:1231–1246. https://doi.org/10.2174/1389450115666141027110156

    Article  CAS  PubMed  Google Scholar 

  26. Bar-Sagi D, Hall A (2000) Ras and Rho GTPases: a family reunion. Cell 103:227–238. https://doi.org/10.1016/s0092-8674(00)00115-x

    Article  CAS  PubMed  Google Scholar 

  27. Minden A, Lin A, Claret FX, Abo A, Karin M (1995) Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell 81:1147–1157. https://doi.org/10.1016/s0092-8674(05)80019-4

    Article  CAS  PubMed  Google Scholar 

  28. Chiariello M, Marinissen MJ, Gutkind JS (2001) Regulation of c-myc expression by PDGF through Rho GTPases. Nat Cell Biol 3:580–586. https://doi.org/10.1038/35078555

    Article  CAS  PubMed  Google Scholar 

  29. Zhao J, Jie Q, Li G, Li Y, Liu B, Li H, Luo J, Qin X, Li Z, Wei Y (2018) Rac1 promotes the survival of H9c2 cells during serum deficiency targeting JNK/c-JUN/Cyclin-D1 and AKT2/MCL1 pathways. Int J Med Sci 15:1062–1071. https://doi.org/10.7150/ijms.25527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wilkins BJ, Dai YS, Bueno OF, Parsons SA, Xu J, Plank DM, Jones F, Kimball TR, Molkentin JD (2004) Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circ Res 94:110–118. https://doi.org/10.1161/01.res.0000109415.17511.18

    Article  CAS  PubMed  Google Scholar 

  31. Robbs BK, Lucena PI, Viola JP (2013) The transcription factor NFAT1 induces apoptosis through cooperation with Ras/Raf/MEK/ERK pathway and upregulation of TNF-α expression. Biochim Biophys Acta 1833:2016–2028. https://doi.org/10.1016/j.bbamcr.2013.04.003

    Article  CAS  PubMed  Google Scholar 

  32. Ge Y, Pan S, Guan D, Yin H, Fan Y, Liu J, Zhang S, Zhang H, Feng L, Wang Y, Xu R, Yin JQ (2013) MicroRNA-350 induces pathological heart hypertrophy by repressing both p38 and JNK pathways. Biochim Biophys Acta 1832:1–10. https://doi.org/10.1016/j.bbadis.2012.09.004

    Article  CAS  PubMed  Google Scholar 

  33. Yamamoto H, Schoonjans K, Auwerx J (2007) Sirtuin functions in health and disease. Mol Endocrinol 21:1745–1755. https://doi.org/10.1210/me.2007-0079

    Article  CAS  PubMed  Google Scholar 

  34. Hsu CP, Zhai P, Yamamoto T, Maejima Y, Matsushima S, Hariharan N, Shao D, Takagi H, Oka S, Sadoshima J (2010) Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation 122:2170–2182. https://doi.org/10.1161/CIRCULATIONAHA.110.958033

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yuan YP, Ma ZG, Zhang X, Xu SC, Zeng XF, Yang Z, Deng W, Tang QZ (2018) CTRP3 protected against doxorubicin-induced cardiac dysfunction, inflammation and cell death via activation of Sirt1. J Mol Cell Cardiol 114:38–47. https://doi.org/10.1016/j.yjmcc.2017.10.008

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

“This research was funded by Taiwan Department of Health Clinical Trial and Research Centre of Excellence; grant number MOHW107-TDU-B-212-123004 and DMR-109-059 (China Medical University Hospital)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Yang Huang.

Ethics declarations

Conflict of interest

All the authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, KH., Kumar, V.B., Shanmugam, T. et al. miR-145-5p targets paxillin to attenuate angiotensin II-induced pathological cardiac hypertrophy via downregulation of Rac 1, pJNK, p-c-Jun, NFATc3, ANP and by Sirt-1 upregulation. Mol Cell Biochem 476, 3253–3260 (2021). https://doi.org/10.1007/s11010-021-04100-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04100-w

Keywords

Navigation