Skip to main content
Log in

CircKIF2A contributes to cell proliferation, migration, invasion and glycolysis in human neuroblastoma by regulating miR-129-5p/PLK4 axis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Multiple circular RNAs (circRNAs) have been identified to act as essential mediators in diverse human cancers. However, the roles of circRNAs in neuroblastoma (NB) are largely unknown. In this study, we aimed to explore the function of circKIF2A in NB. Quantitative real-time polymerase chain reaction was executed to detect the levels of circKIF2A, KIF2A mRNA, miR-129-5p and polo-like kinase 4 (PLK4) mRNA. Actinomycin D assay and RNase R digestion assay were conducted to analyze the feature of circKIF2A. 3-(4, 5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, transwell assay and specific kits were utilized to evaluate cell proliferation, metastasis and glycolysis, respectively. Western blot assay was performed to examine the protein levels of matrix metalloproteinase 2 (MMP2), MMP9 and PLK4. Bioinformatics analysis, RNA pull-down assay and dual-luciferase reporter assay were conducted to analyze the relationship between miR-129-5p and circKIF2A or PLK4. Murine xenograft model assay was done to investigate the role of circKIF2A in NB in vivo. CircKIF2A level was increased in NB tissue samples and cell lines. Silencing of circKIF2A impeded NB cell proliferation, migration, invasion and glycolysis. For mechanism analysis, circKIF2A could positively modulate PLK4 expression via sponging miR-129-5p. Moreover, miR-129-5p inhibition reversed the inhibitory effects of circKIF2A silencing on the behaviors of NB cells. MiR-129-5p overexpression weakened the malignant biological behaviors of NB cells by targeting PLK4. Additionally, circKIF2A knockdown hampered tumorigenesis in vivo. CircKIF2A knockdown suppressed cell proliferation, migration, invasion and glycolysis via downregulating PLK4 expression through miR-129-5p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

Abbreviations

NB:

Neuroblastoma

PLK4:

Polo-like kinase 4

MMP2:

Matrix metalloproteinase 2

References

  1. Park JR, Eggert A, Caron H (2008) Neuroblastoma: biology, prognosis, and treatment. Pediatr Clin North Am 55(1):97–120

    Article  PubMed  Google Scholar 

  2. Pugh TJ, Morozova O, Attiyeh EF, Asgharzadeh S, Wei JS, Auclair D, Carter SL, Cibulskis K, Hanna M, Kiezun A et al (2013) The genetic landscape of high-risk neuroblastoma. Nat Genet 45(3):279–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Garaventa A, Parodi S, De Bernardi B, Dau D, Manzitti C, Conte M, Casale F, Viscardi E, Bianchi M, D’Angelo P et al (2009) Outcome of children with neuroblastoma after progression or relapse. A retrospective study of the Italian neuroblastoma registry. Eur J Cancer 45(16):2835–2842

    Article  PubMed  Google Scholar 

  4. Whittle SB, Smith V, Doherty E, Zhao S, McCarty S, Zage PE (2017) Overview and recent advances in the treatment of neuroblastoma. Expert Rev Anticancer Ther 17(4):369–386

    Article  CAS  PubMed  Google Scholar 

  5. Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32(5):453–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Qu S, Zhong Y, Shang R, Zhang X, Song W, Kjems J, Li H (2017) The emerging landscape of circular RNA in life processes. RNA Biol 14(8):992–999

    Article  PubMed  Google Scholar 

  7. Liang HF, Zhang XZ, Liu BG, Jia GT, Li WL (2017) Circular RNA circ-ABCB10 promotes breast cancer proliferation and progression through sponging miR-1271. Am J Cancer Res 7(7):1566–1576

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang XL, Xu LL, Wang F (2017) Hsa_circ_0020397 regulates colorectal cancer cell viability, apoptosis and invasion by promoting the expression of the miR-138 targets TERT and PD-L1. Cell Biol Int 41(9):1056–1064

    Article  CAS  PubMed  Google Scholar 

  9. Li J, Zhen L, Zhang Y, Zhao L, Liu H, Cai D, Chen H, Yu J, Qi X, Li G (2017) Circ-104916 is downregulated in gastric cancer and suppresses migration and invasion of gastric cancer cells. Onco Targets Ther 10:3521–3529

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mahmoudi E, Kiltschewskij D, Fitzsimmons C, Cairns MJ (2019) Depolarization-associated CircRNA regulate neural gene expression and in some cases may function as templates for translation. Cells 9(1):25

    Article  PubMed Central  Google Scholar 

  11. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531

    Article  CAS  PubMed  Google Scholar 

  12. Lee JJ, Drakaki A, Iliopoulos D, Struhl K (2012) MiR-27b targets PPARgamma to inhibit growth, tumor progression and the inflammatory response in neuroblastoma cells. Oncogene 31(33):3818–3825

    Article  CAS  PubMed  Google Scholar 

  13. Welch C, Chen Y, Stallings RL (2007) MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26(34):5017–5022

    Article  CAS  PubMed  Google Scholar 

  14. Wang X, Li J, Xu X, Zheng J, Li Q (2018) miR-129 inhibits tumor growth and potentiates chemosensitivity of neuroblastoma by targeting MYO10. Biomed Pharmacother 103:1312–1318

    Article  CAS  PubMed  Google Scholar 

  15. Wang J, Zuo J, Wang M, Ma X, Gao K, Bai X, Wang N, Xie W, Liu H (2019) Pololike kinase 4 promotes tumorigenesis and induces resistance to radiotherapy in glioblastoma. Oncol Rep 41(4):2159–2167

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Liao Z, Zhang H, Fan P, Huang Q, Dong K, Qi Y, Song J, Chen L, Liang H, Chen X et al (2019) High PLK4 expression promotes tumor progression and induces epithelial–mesenchymal transition by regulating the Wnt/betacatenin signaling pathway in colorectal cancer. Int J Oncol 54(2):479–490

    CAS  PubMed  Google Scholar 

  17. Marina M, Saavedra HI (2014) Nek2 and Plk4: prognostic markers, drivers of breast tumorigenesis and drug resistance. Front Biosci (Landmark Ed) 19:352–365

    Article  Google Scholar 

  18. Zhang N, Liu FL, Ma TS, Zhang ZZJ (2019) LncRNA SNHG1 contributes to tumorigenesis and mechanism by targeting miR-338-3p to regulate PLK4 in human neuroblastoma. Eur Rev Med Pharmacol Sci 23(20):8971–8983

    CAS  PubMed  Google Scholar 

  19. Glazar P, Papavasileiou P, Rajewsky N (2014) circBase: a database for circular RNAs. RNA 20(11):1666–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li JH, Liu S, Zhou H, Qu LH, Yang JH (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42(Database issue):D92-97

    Article  CAS  PubMed  Google Scholar 

  21. Marchiq I, Pouyssegur J (2016) Hypoxia, cancer metabolism and the therapeutic benefit of targeting lactate/H(+) symporters. J Mol Med (Berl) 94(2):155–171

    Article  CAS  Google Scholar 

  22. Li C, Zhang G, Zhao L, Ma Z, Chen H (2016) Metabolic reprogramming in cancer cells: glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer. World J Surg Oncol 14(1):15

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kulcheski FR, Christoff AP, Margis R (2016) Circular RNAs are miRNA sponges and can be used as a new class of biomarker. J Biotechnol 238:42–51

    Article  CAS  PubMed  Google Scholar 

  24. Sun X, Xue H, Xiong Y, Yu R, Gao X, Qian M, Wang S, Wang H, Xu J, Chen Z et al (2019) GALE promotes the proliferation and migration of glioblastoma cells and is regulated by miR-let-7i-5p. Cancer Manag Res 11:10539–10554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li H, Yang F, Hu A, Wang X, Fang E, Chen Y, Li D, Song H, Wang J, Guo Y et al (2019) Therapeutic targeting of circ-CUX1/EWSR1/MAZ axis inhibits glycolysis and neuroblastoma progression. EMBO Mol Med 11(12):e10835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23(1):27–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Seyfried TN, Mukherjee P (2005) Targeting energy metabolism in brain cancer: review and hypothesis. Nutr Metab (Lond) 2:30

    Article  Google Scholar 

  28. Bordone MP, Salman MM, Titus HE, Amini E, Andersen JV, Chakraborti B, Diuba AV, Dubouskaya TG, Ehrke E, Espindola de Freitas A et al (2019) The energetic brain—a review from students to students. J Neurochem 151(2):139–165

    Article  CAS  PubMed  Google Scholar 

  29. Li M, Tian L, Wang L, Yao H, Zhang J, Lu J, Sun Y, Gao X, Xiao H, Liu M (2013) Down-regulation of miR-129-5p inhibits growth and induces apoptosis in laryngeal squamous cell carcinoma by targeting APC. PLoS ONE 8(10):e77829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang Q, Yu J (2018) MiR-129-5p suppresses gastric cancer cell invasion and proliferation by inhibiting COL1A1. Biochem Cell Biol 96(1):19–25

    Article  CAS  PubMed  Google Scholar 

  31. Chen D, Wang H, Chen J, Li Z, Li S, Hu Z, Huang S, Zhao Y, He X (2018) MicroRNA-129-5p regulates glycolysis and cell proliferation by targeting the glucose transporter SLC2A3 in gastric cancer cells. Front Pharmacol 9:502

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tian X, Zhou D, Chen L, Tian Y, Zhong B, Cao Y, Dong Q, Zhou M, Yan J, Wang Y et al (2018) Polo-like kinase 4 mediates epithelial-mesenchymal transition in neuroblastoma via PI3K/Akt signaling pathway. Cell Death Dis 9(2):54

    Article  PubMed  PubMed Central  Google Scholar 

  33. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37(1):13–25

    Article  CAS  PubMed  Google Scholar 

  34. Franco C, Gerhardt H (2012) Tissue engineering: blood vessels on a chip. Nature 488(7412):465–466

    Article  CAS  PubMed  Google Scholar 

  35. Salman MM, Marsh G, Kusters I, Delince M, Di Caprio G, Upadhyayula S, de Nola G, Hunt R, Ohashi KG, Gray T et al (2020) Design and validation of a human brain endothelial microvessel-on-a-chip open microfluidic model enabling advanced optical imaging. Front Bioeng Biotechnol 8:573775

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cochrane A, Albers HJ, Passier R, Mummery CL, van den Berg A, Orlova VV, van der Meer AD (2019) Advanced in vitro models of vascular biology: human induced pluripotent stem cells and organ-on-chip technology. Adv Drug Deliv Rev 140:68–77

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xunqiang Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no financial conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11010_2021_4096_MOESM1_ESM.tif

Figure S1. The selection of miR-129-5p and PLK4. (A) The expression levels of (miR-367-5p, miR-6134, miR-6839-3p, miR-6851-5p, miR-1250-3p, miR-1270, miR-129-5p, miR-1301-3p, miR-136-5p and miR-154-3p in NB tissues were detected by qRT-PCR assay. (B and C) The expression levels of miR-129-5p and miR-1301-3p in SK-N-SH and SK-N-AS cells transfected with si-NC or si-circKIF2A were detected by qRT-PCR assay. (D) The levels of SIAH1, PLK1, BCL2, HOXA7, CREB1 and BCL11A in NB tissues were measured by qRT-PCR assay. (E and F) The levels of SIAH1, PLK1, BCL2, HOXA7, CREB1 and BCL11A in SK-N-SH and SK-N-AS cells transfected with miR-NC or miR-129-5p were detected by qRT-PCR assay. *P<0.05. Supplementary file1 (TIF 759 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Pan, H., Chen, J. et al. CircKIF2A contributes to cell proliferation, migration, invasion and glycolysis in human neuroblastoma by regulating miR-129-5p/PLK4 axis. Mol Cell Biochem 476, 2513–2525 (2021). https://doi.org/10.1007/s11010-021-04096-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04096-3

Keywords

Navigation