Skip to main content
Log in

Aggregation of gelsolin wild-type and G167K/R, N184K, and D187N/Y mutant peptides and inhibition

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Gelsolin, an actin-binding protein, is localized intra- and extracellularly in the bloodstream and throughout the body. Gelsolin amyloidosis is a disease characterized by several point mutations that lead to cleavage and fibrillization of gelsolin. The D187 mutation to N or Y leads to aggregation of peptide fragments with shortest aggregating peptide identified as 182SFNNGDCFILD192. Recently, G167 has also been identified as relevant gelsolin mutation, which leads to gelsolin deposits in kidneys, but its aggregation is much less understood. Hence, we systematically investigated in vitro the aggregation propensities of the following gelsolin peptides: 167GRRVV171 (1), 161RLFQVKG167 (2), 184NNGDCFILDL193 (3), 188CFILDL193 (4), 187DCFILDL193 (5), and their respective mutants (G167K, G167R, N184K, D187Y, D187N), by using spectroscopic methods [fluorescence Proteostat, Thioflavin T (ThT), turbidity assay, and Dynamic Light Scattering (DLS)], and Transmission Electron Microscopy (TEM). The (non) mutant peptides containing CFILDL sequence aggregated into fibrillar networks, while G167R mutation promoted aggregation compared to the wild-type sequence. In the presence of inhibitors, Methylene Blue (MB) and epigallocatechin gallate (EGCG), the gelsolin peptide (3–5) aggregation was reduced with the IC50 values in the 2–13 µM range. We discovered that inhibitors have dual functionality, as aggregation inhibitors and disaggregation promoters, potentially allowing for the prevention and reversal of gelsolin amyloidosis. Such therapeutic strategies may improve outcomes related to other amyloidogenic diseases of the heart, brain, and eye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data are available and included as electronic supplementary material.

References

  1. Solomon JP, Bourgault S, Powers ET, Kelly JW (2011) Heparin binds 8 kDa gelsolin cross-β-sheet oligomers and accelerates amyloidogenesis by hastening fibril extension. Biochemistry 50:2486–2498. https://doi.org/10.1021/bi101905n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Solomon JP, Page LJ, Balch WE, Kelly JW (2013) Gelsolin amyloidosis: genetics, biochemistry, pathology and possible strategies for therapeutic intervention. Crit Rev Biochem Mol Biol 47:282–296. https://doi.org/10.3109/10409238.2012.661401

    Article  CAS  Google Scholar 

  3. Nag S, Ma Q, Wang H et al (2009) Ca2+ binding by domain 2 plays a critical role in the activation and stabilization of gelsolin. Proc Natl Acad Sci USA 106:13713–13718. https://doi.org/10.1073/pnas.0812374106

    Article  PubMed  Google Scholar 

  4. Pihlamaa T, Rautio J, Kiuru-Enari S, Suominen S (2011) Gelsolin amyloidosis as a cause of early aging and progressive bilateral facial paralysis. Plast Reconstr Surg 127:2342–2351. https://doi.org/10.1097/PRS.0b013e318213a0a2

    Article  CAS  PubMed  Google Scholar 

  5. Yin HL, Stossel TP (1979) Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature 281:583–586. https://doi.org/10.1038/281583a0

    Article  CAS  PubMed  Google Scholar 

  6. Bonì F, Milani M, Barbiroli A et al (2018) Gelsolin pathogenic Gly167Arg mutation promotes domain-swap dimerization of the protein. Hum Mol Genet 27:53–65. https://doi.org/10.1093/hmg/ddx383

    Article  CAS  PubMed  Google Scholar 

  7. Solomon JP, Yonemoto IT, Murray AN et al (2009) The 8 and 5 kDa fragments of plasma gelsolin form amyloid fibrils by a nucleated polymerization mechanism, while the 68 kDa fragment is not amyloidogenic. Biochemistry 48:11370–11380. https://doi.org/10.1021/bi901368e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ratnaswamy G, Koepf E, Bekele H et al (1999) The amyloidogenicity of gelsolin is controlled by proteolysis and pH. Chem Biol 6:293–304. https://doi.org/10.1016/S1074-5521(99)80075-1

    Article  CAS  PubMed  Google Scholar 

  9. Arya P, Srivastava A, Vasaikar SV et al (2014) Selective interception of gelsolin amyloidogenic stretch results in conformationally distinct aggregates with reduced toxicity. ACS Chem Neurosci 5:982–992. https://doi.org/10.1021/cn500002v

    Article  CAS  PubMed  Google Scholar 

  10. Srivastava A, Arya P, Goel S et al (2015) Gelsolin amyloidogenesis is effectively modulated by curcumin and emetine conjugated PLGA nanoparticles. PLoS ONE 10:1–18. https://doi.org/10.1371/journal.pone.0127011

    Article  CAS  Google Scholar 

  11. Maury CPJ, Nurmiaho-Lassila EL, Boysen G, Liljeström M (2003) Fibrillogenesis in gelsolin-related familial amyloidosis. Amyloid 10:21–25. https://doi.org/10.1080/13506129.2003.12088564

    Article  CAS  PubMed  Google Scholar 

  12. Gazit E (2002) A possible role for π-stacking in the self-assembly of amyloid fibrils. FASEB J 16:77–83. https://doi.org/10.1096/fj.01-0442hyp

    Article  CAS  PubMed  Google Scholar 

  13. Maury CPJ, Nurmiaho-Lassila EL (1992) Creation of amyloid fibrils from mutant Asn187 gelsolin peptides. Biochem Biophys Res Commun 183:227–231. https://doi.org/10.1016/0006-291X(92)91632-Z

    Article  CAS  PubMed  Google Scholar 

  14. Maury CPJ, Liljeström M, Boysen G et al (2000) Danish type gelsolin related amyloidosis: 654G-T mutation is associated with a disease pathogenetically and clinically similar to that caused by the 654G-A mutation (familial amyloidosis of the Finnish type). J Clin Pathol 53:95–99. https://doi.org/10.1136/jcp.53.2.95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bonì F, Milani M, Porcari R et al (2016) Molecular basis of a novel renal amyloidosis due to N184K gelsolin variant. Sci Rep 6:1–11. https://doi.org/10.1038/srep33463

    Article  CAS  Google Scholar 

  16. Sethi S, Theis JD, Quint P et al (2013) Renal amyloidosis associated with a novel sequence variant of gelsolin. Am J Kidney Dis 61:161–166. https://doi.org/10.1053/j.ajkd.2012.07.016

    Article  CAS  PubMed  Google Scholar 

  17. Efebera YA, Sturm A, Baack EC et al (2014) Novel gelsolin variant as the cause of nephrotic syndrome and renal amyloidosis in a large kindred. Amyloid 21:110–112. https://doi.org/10.3109/13506129.2014.891502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goyal D, Shuaib S, Mann S, Goyal B (2017) Rationally designed peptides and peptidomimetics as inhibitors of amyloid-β (Aβ) aggregation: potential therapeutics of Alzheimer’s disease. ACS Comb Sci 19:55–80. https://doi.org/10.1021/acscombsci.6b00116

    Article  CAS  PubMed  Google Scholar 

  19. Al-Hilaly YK, Pollack SJ, Rickard JE et al (2018) Cysteine-independent inhibition of Alzheimer’s disease-like paired helical filament assembly by leuco-methylthioninium (LMT). J Mol Biol 430:4119–4131. https://doi.org/10.1016/j.jmb.2018.08.010

    Article  CAS  PubMed  Google Scholar 

  20. Necula M, Breydo L, Milton S et al (2007) Methylene blue inhibits amyloid Aβ oligomerization by promoting fibrillization. Biochemistry 46:8850–8860. https://doi.org/10.1021/bi700411k

    Article  CAS  PubMed  Google Scholar 

  21. Cisek K, Cooper GL, Huseby CJ, Kuret J (2014) Structure and mechanism of action of tau aggregation inhibitors. Curr Alzheimer Res 11:918–927. https://doi.org/10.2174/1567205011666141107150331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Reddy S, Aggarwal BB (1994) Curcumin is a non-competitive and selective inhibitor of phosphorylase kinase. FEBS Lett 341:19–22. https://doi.org/10.1016/0014-5793(94)80232-7

    Article  CAS  PubMed  Google Scholar 

  23. Van Overbeke W, Wongsantichon J, Everaert I et al (2015) An ER-directed gelsolin nanobody targets the first step in amyloid formation in a gelsolin amyloidosis mouse model. Hum Mol Genet 24:2492–2507. https://doi.org/10.1093/hmg/ddv010

    Article  CAS  PubMed  Google Scholar 

  24. Jiang D, Rauda I, Han S et al (2012) Aggregation pathways of the amyloid β(1–42) peptide depend on its colloidal stability and ordered β- sheet stacking. Langmuir 28:12711–21721. https://doi.org/10.1021/la3021436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shi Q, Zhou Y, Sun Y (2005) Influence of pH and ionic strength on the steric mass-action model parameters around the isoelectric point of protein. Biotechnol Prog 21:516–523. https://doi.org/10.1021/bp049735o

    Article  CAS  PubMed  Google Scholar 

  26. Biancalana M, Koide S (2010) Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta - Proteins Proteom 1804:1405–1412. https://doi.org/10.1016/j.bbapap.2010.04.001

    Article  CAS  Google Scholar 

  27. De Baets G, Van Doorn L, Rousseau F, Schymkowitz J (2015) Increased aggregation is more frequently associated to human disease-associated mutations than to neutral polymorphisms. PLoS Comput Biol 11:1–14. https://doi.org/10.1371/journal.pcbi.1004374

    Article  CAS  Google Scholar 

  28. Close W, Neumann M, Schmidt A et al (2018) Physical basis of amyloid fibril polymorphism. Nat Commun 9:1–7. https://doi.org/10.1038/s41467-018-03164-5

    Article  CAS  Google Scholar 

  29. Santhoshkumar P, Sharma KK (2004) Inhibition of amyloid fibrillogenesis and toxicity by a peptide chaperone. Mol Cell Biochem 267:147–155. https://doi.org/10.1023/B:MCBI.0000049373.15558.b8

    Article  CAS  PubMed  Google Scholar 

  30. Novo M, Freire S, Al-Soufi W (2018) Critical aggregation concentration for the formation of early amyloid-β (1–42) oligomers. Sci Rep 8:3–10. https://doi.org/10.1038/s41598-018-19961-3

    Article  CAS  Google Scholar 

  31. Santhoshkumar P, Raju M, Sharma KK (2011) αA-crystallin peptide 66SDRDKFVIFLDVKHF80 accumulating in aging lens impairs the function of α-crystallin and induces lens protein aggregation. PLoS ONE. https://doi.org/10.1371/journal.pone.0019291

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zapadka KL, Becher FJ, Gomes dos Santos AL, Jackson SE (2017) Factors affecting the physical stability (aggregation) of peptide therapeutics. Interface Focus. https://doi.org/10.1098/rsfs.2017.0030

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shen C, Murphy RM (1995) Solvent effects on self-assembly of beta-amyloid peptide. Biophys J 69:640–665. https://doi.org/10.1016/S0006-3495(95)79940-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tjernberg A, Markova N, Griffiths WJ, Hallén D (2006) DMSO-related effects in protein characterization. J Biomol Screen 11:131–137. https://doi.org/10.1177/1087057105284218

    Article  CAS  PubMed  Google Scholar 

  35. Lesné S, Ming TK, Kotilinek L et al (2006) A specific amyloid-β protein assembly in the brain impairs memory. Nature 440:352–357. https://doi.org/10.1038/nature04533

    Article  CAS  PubMed  Google Scholar 

  36. Shi Y, Mowery RA, Ashley J et al (2012) Abnormal SDS-PAGE migration of cytosolic proteins can identify domains and mechanisms that control surfactant binding. Protein Sci 21:1197–1209. https://doi.org/10.1002/pro.2107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sengupta U, Nilson AN, Kayed R (2016) the role of amyloid-β oligomers in toxicity, propagation, and immunotherapy. EBioMedicine 6:42–49. https://doi.org/10.1016/j.ebiom.2016.03.035

    Article  PubMed  PubMed Central  Google Scholar 

  38. Streets AM, Sourigues Y, Kopito RR et al (2013) Simultaneous measurement of amyloid fibril formation by dynamic light scattering and fluorescence reveals complex aggregation kinetics. PLoS ONE 8:1–10. https://doi.org/10.1371/journal.pone.0054541

    Article  CAS  Google Scholar 

  39. Dahlgren KN, Manelli AM, Blaine Stine W et al (2002) Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability. J Biol Chem 277:32046–32053. https://doi.org/10.1074/jbc.M201750200

    Article  CAS  PubMed  Google Scholar 

  40. Kumar SS, Singh A, Prakash V, Kumar CS (2014) Structure modeling and dynamics driven mutation and phosphorylation analysis of Beta-amyloid peptides. Bioinformation 10:569–574. https://doi.org/10.6026/97320630010569

    Article  Google Scholar 

  41. Crowe A, James MJ, Virginia MYL et al (2013) Aminothienopyridazines and methylene blue affect tau fibrillization via cysteine oxidation. J Biol Chem 288:11024–11037. https://doi.org/10.1074/jbc.M112.436006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu H, Yu L, Dong X, Sun Y (2017) Synergistic effects of negatively charged hydrophobic nanoparticles and (−)-epigallocatechin-3-gallate on inhibiting amyloid β-protein aggregation. J Colloid Interface Sci 491:305–312. https://doi.org/10.1016/j.jcis.2016.12.038

    Article  CAS  PubMed  Google Scholar 

  43. Palhano FL, Lee J, Grimster NP, Kelly JW (2013) Toward the molecular mechanism(s) by which EGCG treatment remodels mature amyloid fibrils. J Am Chem Soc 135:7503–7510. https://doi.org/10.1021/ja3115696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wobsta HJ, Sharmad A, Diamondd MI et al (2015) The green tea polyphenol (−)-epigallocatechin gallate prevents the aggregation of tau protein into toxic oligomers at substoichiometric ratios. FEBS Lett 589:77–83. https://doi.org/10.1016/j.febslet.2014.11.026

    Article  CAS  Google Scholar 

  45. Soeda Y, Yoshikawa M, Almeida OFX et al (2015) Toxic tau oligomer formation blocked by capping of cysteine residues with 1,2-dihydroxybenzene groups. Nat Commun. https://doi.org/10.1038/ncomms10216

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wang J, Ho L, Zhao W et al (2008) Grape-derived polyphenolics prevent Aβ oligomerization and attenuate cognitive deterioration in a mouse model of Alzheimer’s disease. J Neurosci 28:6388–6392. https://doi.org/10.1523/JNEUROSCI.0364-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Guéroux M, Laguerre M, Szlosek-Pinaud M et al (2012) Polyphenols and alzheimer’s disease: tau/polyphenol interactions investigated by NMR and molecular modelling. Nutr Aging 1:201–206. https://doi.org/10.3233/NUA-130015

    Article  Google Scholar 

Download references

Acknowledgements

Mohanad Ahmad thanks the Department of Chemistry at Oakland University for support. Shivani Dabadi carried out preliminary experiments with gelsolin peptide 5. Authors acknowledge Imaging Facilities at Michigan State University and Trent University, Drs. D. Szlag (Oakland University), N. Beyeh (Oakland University), and C. Metcalfe (Trent University) for instrument access. M.A., J. E., C.G., S.M., and C.W. designed the experiments discussed in this study and wrote the manuscript. M.A., J. E., and C. G. carried out the experiments. All authors have given approval to the final version of the manuscript. This work was supported by American Heart Association Grant #18IPA34170477 to S. M. (2018–2020) and G.W. (2019–2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanela Martic-Milne.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 17269 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, M., Esposto, J., Golec, C. et al. Aggregation of gelsolin wild-type and G167K/R, N184K, and D187N/Y mutant peptides and inhibition. Mol Cell Biochem 476, 2393–2408 (2021). https://doi.org/10.1007/s11010-021-04085-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04085-6

Keywords

Navigation