Skip to main content

Advertisement

Log in

Differential sensitivity of renal carcinoma cells to doxorubicin and epigenetic therapeutics depends on the genetic background

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Differential sensitivity to chemotherapeutics is a limitation in chemotherapy of kidney cancer patients. Role of genetic background in chemotherapy is not fully understood. Therefore, this study evaluated the influence of genetic/epigenetic background of renal cancer cells on the sensitivity to chemotherapeutics. Two renal cell carcinoma (RCC) cell lines, Caki-1 and 786-0, with different genetic makeup of p53 and VHL were treated with doxorubicin either alone or in combination with epigenetic therapeutics 5-aza-2-dc and TSA. Sensitivity of RCC cells to these drugs was evaluated by cell viability and cell cycle analysis and was further confirmed by analysis of selected genes expression. Cell viability data revealed that 786-0 cells were more sensitive than Caki-1 to doxorubicin. Combination of doxorubicin with 5-aza-2-dc or TSA was more effective to inhibit growth of Caki-1 cells but not the 786-0. Data of cell cycle analysis and expression of representative genes for tumor suppressor, cell cycle and survival, drug transporter and DNA repair further provided the molecular basis for differential sensitivity of Caki-1 and 786-0 cell lines to doxorubicin. Important findings of this study suggest that doxorubicin is more cytotoxic to primary renal cancer 786-0 cells with mutant VHL and p53 than the metastatic Caki-1 cells with wild-type VHL and p53, and this differential response was independent of p53 expression level. This study suggests that combination of doxorubicin with epigenetic therapeutics could potentially be beneficial in clinical treatment of renal cancer patients with wild-type VHL and p53 but not in patients with mutant VHL and p53.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2018) Cancer Statistics, 2018. CA Cancer J Clin 68:7–30. https://doi.org/10.3322/caac.21387

    Article  PubMed  Google Scholar 

  2. Capitanio U, Bensalah K, Bex A et al (2019) Epidemiology of Renal Cell Carcinoma. Eur Urol 75:74–84. https://doi.org/10.1016/j.eururo.2018.08.036

    Article  PubMed  Google Scholar 

  3. Crumley SM, Divatia M, Truong L et al (2013) Renal cell carcinoma: evolving and emerging subtypes. World J Clin Cases 1:262. https://doi.org/10.12998/wjcc.v1.i9.262

    Article  PubMed  PubMed Central  Google Scholar 

  4. Moch H, Cubilla AL, Humphrey PA et al (2016) The 2016 WHO classification of tumours of the urinary system and male genital organs—part A: renal, penile, and testicular tumours. Eur Urol 70:93–105. https://doi.org/10.1016/j.eururo.2016.02.029

    Article  PubMed  Google Scholar 

  5. Inamura K (2017) Renal cell tumors: understanding their molecular pathological epidemiology and the 2016 WHO classification. Int J Mol Sci 18:2195

    Article  PubMed Central  Google Scholar 

  6. Brodaczewska KK, Szczylik C, Fiedorowicz M et al (2016) Choosing the right cell line for renal cell cancer research. Mol Cancer 15:83

    Article  PubMed  PubMed Central  Google Scholar 

  7. Frew IJ, Moch H (2014) A clearer view of the molecular complexity of clear cell renal cell carcinoma. Annu Rev Pathol Mech Dis 10:263–289. https://doi.org/10.1146/annurev-pathol-012414-040306

    Article  CAS  Google Scholar 

  8. Network T (2013) Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499:43–49. https://doi.org/10.1038/nature12222

    Article  CAS  Google Scholar 

  9. Kim M, Yan Y, Lee K et al (2004) Ectopic expression of von Hippel-Lindau tumor suppressor induces apoptosis in 786-O renal cell carcinoma cells and regresses tumor growth of 786-O cells in nude mouse. Biochem Biophys Res Commun 320:945–950. https://doi.org/10.1016/j.bbrc.2004.06.042

    Article  CAS  PubMed  Google Scholar 

  10. Mollica V, Di Nunno V, Gatto L et al (2019) Resistance to systemic agents in renal cell carcinoma predict and overcome genomic strategies adopted by tumor. Cancers (Basel) 11:830

    Article  Google Scholar 

  11. Saeed K, Ojamies P, Pellinen T et al (2019) Clonal heterogeneity influences drug responsiveness in renal cancer assessed by ex vivo drug testing of multiple patient-derived cancer cells. Int J Cancer 144:1356–1366. https://doi.org/10.1002/ijc.31815

    Article  CAS  PubMed  Google Scholar 

  12. Joosten SC, Smits KM, Aarts MJ et al (2018) Epigenetics in renal cell cancer: Mechanisms and clinical applications. Nat Rev Urol 15:430–451

    Article  CAS  PubMed  Google Scholar 

  13. Xing T, He H (2016) Epigenomics of clear cell renal cell carcinoma: Mechanisms and potential use in molecular pathology. Chin J Cancer Res 28:80–91

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Housman G, Byler S, Heerboth S et al (2014) Drug resistance in cancer: an overview. Cancers (Basel) 6:1769–1792. https://doi.org/10.3390/cancers6031769

    Article  Google Scholar 

  15. Arul M, Roslani AC, Cheah SH (2017) Heterogeneity in cancer cells: variation in drug response in different primary and secondary colorectal cancer cell lines in vitro. Vitr Cell Dev Biol 53:435–447. https://doi.org/10.1007/s11626-016-0126-x

    Article  CAS  Google Scholar 

  16. Gerlinger M, Rowan AJ, Horswell S et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892. https://doi.org/10.1056/NEJMoa1113205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ashraf HM, Moser J, Spencer SL (2019) Senescence evasion in chemotherapy: a sweet spot for p21. Cell 178:267–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. el-Deiry WS, Harper JW, O’Connor PM et al (1994) WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 54:1169–1174

    CAS  PubMed  Google Scholar 

  19. Tsao CC, Corn PG (2010) MDM-2 antagonists induce p53-dependent cell cycle arrest but not cell death in renal cancer cell lines. Cancer Biol Ther 10:1315–1325. https://doi.org/10.4161/cbt.10.12.13612

    Article  CAS  PubMed  Google Scholar 

  20. Singh KP, Treas J, Tyagi T, Gao W (2012) DNA demethylation by 5-aza-2-deoxycytidine treatment abrogates 17 beta-estradiol-induced cell growth and restores expression of DNA repair genes in human breast cancer cells. Cancer Lett 316:62–69. https://doi.org/10.1016/j.canlet.2011.10.022

    Article  CAS  PubMed  Google Scholar 

  21. Chang YW, Singh KP (2019) Nicotine-induced oxidative stress contributes to EMT and stemness during neoplastic transformation through epigenetic modifications in human kidney epithelial cells. Toxicol Appl Pharmacol 374:65–76. https://doi.org/10.1016/j.taap.2019.04.023

    Article  CAS  PubMed  Google Scholar 

  22. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108. https://doi.org/10.1038/nprot.2008.73

    Article  CAS  PubMed  Google Scholar 

  23. National Cancer Institute DTP Developmental Therapeutics Program. https://dtp.cancer.gov/dtpstandard/cancerscreeningdata/index.jsp. Accessed 5 Nov 2019

  24. Insuasty B, Montoya A, Becerra D et al (2013) Synthesis of novel analogs of 2-pyrazoline obtained from [(7-chloroquinolin-4-yl)amino]chalcones and hydrazine as potential antitumor and antimalarial agents. Eur J Med Chem 67:252–262. https://doi.org/10.1016/j.ejmech.2013.06.049

    Article  CAS  PubMed  Google Scholar 

  25. Kuete V, Efferth T (2013) Molecular determinants of cancer cell sensitivity and resistance towards the sesquiterpene farnesol. Pharmazie 68:608–615. https://doi.org/10.1691/ph.2013.6503

    Article  CAS  PubMed  Google Scholar 

  26. Ikediobi ON, Davies H, Bignell G et al (2006) Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Mol Cancer Ther 5:2606–2612. https://doi.org/10.1158/1535-7163.MCT-06-0433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. De Paulsen N, Brychzy A, Fournier MC et al (2001) Role of transforming growth factor-α in von Hippel-Lindau (VHL)-/- clear cell renal carcinoma cell proliferation: A possible mechanism coupling VHL tumor suppressor inactivation and tumorigenesis. Proc Natl Acad Sci USA 98:1387–1392. https://doi.org/10.1073/pnas.031587498

    Article  PubMed  PubMed Central  Google Scholar 

  28. Alleman WG, Tabios RL, Chandramouli GVR et al (2004) The in vitro and in vivo effects of re-expressing methylated von Hippel-Lindau tumor suppressor gene in clear cell renal carcinoma with 5-aza-2′-deoxycytidine. Clin Cancer Res 10:7011–7021. https://doi.org/10.1158/1078-0432.CCR-04-0516

    Article  CAS  PubMed  Google Scholar 

  29. Lee T, Lau T, Ng I (2002) Doxorubicin-induced apoptosis and chemosensitivity in hepatoma cell lines. Cancer Chemother Pharmacol 49:78–86. https://doi.org/10.1007/s00280-001-0376-4

    Article  CAS  PubMed  Google Scholar 

  30. Gao YH, Wu ZX, Xie LQ et al (2017) VHL deficiency augments anthracycline sensitivity of clear cell renal cell carcinomas by down-regulating ALDH2. Nat Commun 8:15337. https://doi.org/10.1038/ncomms15337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen J (2016) The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a026104

    Article  PubMed  PubMed Central  Google Scholar 

  32. Molchadsky A, Rotter V (2017) p53 and its mutants on the slippery road from stemness to carcinogenesis. Carcinogenesis 38:347–358

    Article  CAS  PubMed  Google Scholar 

  33. O’brate A, Giannakakou P (2003) The importance of p53 location: nuclear or cytoplasmic zip code? Drug Resist Updat 6:313–322. https://doi.org/10.1016/j.drup.2003.10.004

    Article  CAS  PubMed  Google Scholar 

  34. Bug M, Dobbelstein M (2011) Anthracyclines induce the accumulation of mutant p53 through E2F1-dependent and-independent mechanisms. Oncogene 30:3612–3624. https://doi.org/10.1038/onc.2011.72

    Article  CAS  PubMed  Google Scholar 

  35. Rivera A, Mavila A, Bayless KJ et al (2006) Cyclin A1 is a p53-induced gene that mediates apoptosis, G2/M arrest, and mitotic catastrophe in renal, ovarian, and lung carcinoma cells. Cell Mol Life Sci 63:1425–1439. https://doi.org/10.1007/s00018-006-5521-5

    Article  CAS  PubMed  Google Scholar 

  36. Taymaz-Nikerel H, Karabekmez ME, Eraslan S, Kırdar B (2018) Doxorubicin induces an extensive transcriptional and metabolic rewiring in yeast cells. Sci Rep. https://doi.org/10.1038/s41598-018-31939-9

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pommier Y, Leo E, Zhang H, Marchand C (2010) DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol 17:421–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim SY, Kim SJ, Kim BJ et al (2006) Doxorubicin-induced reactive oxygen species generation and intracellular Ca2+ increase are reciprocally modulated in rat cardiomyocytes. Exp Mol Med 38:535–545. https://doi.org/10.1038/emm.2006.63

    Article  CAS  PubMed  Google Scholar 

  39. Meredith AM, Dass CR (2016) Increasing role of the cancer chemotherapeutic doxorubicin in cellular metabolism. J Pharm Pharmacol 68:729–741. https://doi.org/10.1111/jphp.12539

    Article  CAS  PubMed  Google Scholar 

  40. Nitiss JL (2009) Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 9:338–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284

    Article  CAS  PubMed  Google Scholar 

  42. Nishiyama K, Shirahama T, Yoshimura A et al (1993) Expression of the multidrug transporter, P-glycoprotein, in renal and transitional cell carcinomas. Cancer 71:3611–3619. https://doi.org/10.1002/1097-0142(19930601)71:11%3c3611::AID-CNCR2820711124%3e3.0.CO;2-T

    Article  CAS  PubMed  Google Scholar 

  43. Kuo MT, Liu Z, Wei Y et al (2002) Induction of human MDR1 gene expression by 2-acetylaminofluorene is mediated by effectors of the phosphoinositide 3-kinase pathway that activate NF-κB signaling. Oncogene 21:1945–1954. https://doi.org/10.1038/sj.onc.1205117

    Article  CAS  PubMed  Google Scholar 

  44. Conde-Pérezprina JC, León-Galván MÁ, Konigsberg M (2012) DNA mismatch repair system: repercussions in cellular homeostasis and relationship with aging. Oxid Med Cell Longev 2012:1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamaleshwar P. Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no financial conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharya, N., Singh, K.P. Differential sensitivity of renal carcinoma cells to doxorubicin and epigenetic therapeutics depends on the genetic background. Mol Cell Biochem 476, 2365–2379 (2021). https://doi.org/10.1007/s11010-021-04076-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04076-7

Keywords

Navigation