Skip to main content

Advertisement

Log in

BMP10 positively regulates myogenic differentiation in C2C12 myoblasts via the Smad 1/5/8 signaling pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

BMP10 plays an essential role in regulating cardiac growth, chamber maturation, and maintaining normal expressions of several key cardiogenic factors; however, other functional roles of BMP10 in muscle remain unexplored. This study therefore undertook to investigate the roles of BMP10 in muscle physiology, using mouse-derived C2C12 myoblasts. Bmp10 silencing prevented a number of biological processes such as myogenic differentiation, glucose uptake, and lipid catabolism, whereas exogenous induction of BMP10 in C2C12 cells significantly stimulated the expression of proteins and genes involved in these processes, as well as mitochondrial biogenesis and thermogenesis, resulting in reduced lipid accumulation. A mechanistic study revealed that BMP10 stimulates myogenesis mainly via the Smad 1/5/8 signaling pathway. In conclusion, our data unveiled a previously unknown mechanism in the regulation of lipid metabolisms by BMP10 in muscle cells and identified its significant roles in systemic metabolic homeostasis, shedding light on BMP10 as a pharmacotherapeutic target to treat metabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABHD5/Abhd5 :

1-acylglycerol-3-phosphate O-acyltransferase ABHD5 encoding gene

ACOX1:

acyl-coenzyme A oxidase 1

Actr2a :

activin receptor type-2a encoding gene

Actr2b :

activin receptor type-2b encoding gene

Acvr1 :

activin A receptor type 1 encoding gene

Acvrl1 :

activin receptor-like kinase 1 encoding gene

AKT/PKB:

protein kinase B

ATGL:

adipose triglyceride lipase

BMP10/Bmp10 :

bone morphogenetic protein 10/encoding gene

Bmpr1a :

bone morphogenetic protein receptor type IA encoding gene

Bmpr1b :

bone morphogenetic protein receptor type IB encoding gene

BMPR2/Bmpr2 :

bone morphogenetic protein receptor type II/encoding gene

BSA:

bovine serum albumin

CD36/Cd36 :

cluster of differentiation 36/encoding gene

COX4:

cytochrome c oxidase subunit 4

CPT1:

carnitine palmitoyltransferase 1

CYT-C:

cytochrome complex

FAS:

fatty acid synthase

Fatp1 :

long-chain fatty acid transport protein 1 encoding gene

FATP4/Fatp4 :

long-chain fatty acid transport protein 4/encoding gene

GDFs:

growth and differentiation factors

GLUT4:

glucose transporter type 4

HSL:

hormone-sensitive lipase

MYF5:

myogenic factor 5

MYH/Myh :

myosin heavy chain/encoding gene

MYOD:

myoblast determination protein 1

MYOG/Myog :

myogenin/encoding gene

Nrf1 :

nuclear respiratory factor 1 encoding gene

PGC-1α:

peroxisome proliferator-activated receptor gamma co-activator 1-alpha

Plin :

perilipin encoding gene

Ryr1 :

ryanodine receptor 1 encoding gene

SERCA2:

sarcoplasmic/endoplasmic reticulum calcium ATPase 2

Sln :

sarcolipin encoding gene

UCP/Ucp :

uncoupling protein/encoding gene

References

  1. Chal J, Pourquié O (2017) Making muscle: skeletal myogenesis in vivo and in vitro. Development 144:2104–2122

    Article  CAS  Google Scholar 

  2. Ludolph DC, Konieczny SF (1995) Transcription factor families: muscling in on the myogenic program. FASEB J 9:1595–1604

    Article  CAS  Google Scholar 

  3. Molkentin JD, Olson EN (1996) Defining the regulatory networks for muscle development. Curr Opin Genet Dev 6:445–453

    Article  CAS  Google Scholar 

  4. Arnol HH, Barbara W (1998) Muscle differentiation: more complexity to the network of myogenic regulators. Curr Opin Genet Dev 8:539–544

    Article  Google Scholar 

  5. Bentzinger CF, Wang YX, Rudnicki MA (2012) Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol 4:a008342

    Article  Google Scholar 

  6. Brunetti A, Goldfine ID (1990) Role of myogenin in myoblast differentiation and its regulation by fibroblast growth factor. J Biol Chem 265:5960–5963

    Article  CAS  Google Scholar 

  7. Ganassi M, Badodi S, Quiroga HPO, Zammit PS, Hinits Y, Hughes SM (2008) Myogenin promotes myocyte fusion to balance fibre number and size. Nat Commun 9:4232

    Article  Google Scholar 

  8. Furutani Y, Umemoto T, Murakami M, Matsui T, Funaba M (2011) Role of endogenous TGF-β family in myogenic differentiation of C2C12 cells. J Cell Biochem 112:614–624

    Article  CAS  Google Scholar 

  9. Yaffe D, Saxel O (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270:725–727

    Article  CAS  Google Scholar 

  10. Biressi S, Molinaro M, Cossu G (2007) Cellular heterogeneity during vertebrate skeletal muscle development. Dev Biol 308:281–293

    Article  CAS  Google Scholar 

  11. Stump CS, Henriksen EJ, Wei Y, Sowers JR (2006) The metabolic syndrome: role of skeletal muscle metabolism. Ann Med 38:389–402

    Article  CAS  Google Scholar 

  12. Zurlo F, Larson K, Bogardus C, Ravussin E (1990) Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin Invest 86:1423–1427

    Article  CAS  Google Scholar 

  13. Alvim RO, Cheuhen MR, Machado SR, Sousa AGP, Santos PCJL (2015) General aspects of muscle glucose uptake. An Acad Bras Cienc 87:351–368

    Article  CAS  Google Scholar 

  14. Thiebaud D, Jacot E, Defronzo RA, Maeder E, Jequier E, Felber JP (1982) The effect of grade doses of insulin on total glucose uptake, glucose oxidation, and glucose storage in man. Diabetes 31:957–963

    Article  CAS  Google Scholar 

  15. Cahová M, Vavrínková H, Kazdová L (2007) Glucose-fatty acid interaction in skeletal muscle and adipose tissue in insulin resistance. Physiol Res 56:1–15

    PubMed  Google Scholar 

  16. Mazibuko-Mbeje SE, Dludla PV, Nkambule BB, Obonye N, Louw J (2018) Muscle cell and tissue-current status of research field. In: Sakuma K (ed) The role of glucose and fatty acid metabolism in the development of insulin resistance in skeletal muscle. IntechOpen, London, pp 10–18

    Google Scholar 

  17. Kiens B (2006) Skeletal muscle lipid metabolism in exercise and insulin resistance. Physiol Rev 86:205–243

    Article  CAS  Google Scholar 

  18. Tomlinson DJ, Erskine RM, Morse CI, Winwood K, Gladys OP (2016) The impact of obesity on skeletal muscle strength and structure through adolescence to old age. Biogerontology 17:467–483

    Article  CAS  Google Scholar 

  19. Liu D, Black BL, Derynck R (2001) TGF-beta inhibits muscle differentiation through functional repression of myogenic transcription factors by Smad3. Genes Dev 15:2950–2966

    Article  CAS  Google Scholar 

  20. Periasamy M, Maurya SK, Sahoo SK, Singh S, Reis FCG, Bal NC (2017) Role of SERCA pump in muscle thermogenesis and metabolism. Compr Physiol 7:879–890

    Article  Google Scholar 

  21. Chen H, Shi S, Acosta L et al (2004) BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 131:2219–2231

    Article  CAS  Google Scholar 

  22. Aoki H, Fujii M, Imamura T, Yagi K, Takehara K, Kato M, Miyazono K (2001) Synergistic effects of different bone morphogenetic protein type I receptors on alkaline phosphatase induction. J Cell Sci 114:1483–1489

    CAS  PubMed  Google Scholar 

  23. Chalaux E, López-Rovira T, Rosa JL, Bartrons R, Ventura F (1998) JunB is involved in the inhibition of myogenic differentiation by bone morphogenetic protein-2. J Biol Chem 273:537–543

    Article  CAS  Google Scholar 

  24. Katagiri T, Yamaguchi A, Komaki M et al (1994) Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol 127:1755–1766

    Article  CAS  Google Scholar 

  25. Wozney JM, Rosen V, Celeste AJ et al (1988) Novel regulators of bone formation: molecular clones and activities. Science 242:1528–1534

    Article  CAS  Google Scholar 

  26. Guo J, Lin Q, Shao Y, Rong L, Zhang D (2017) BMP-7 suppresses excessive scar formation by activating the BMP-7/SMAD1/5/8 signaling pathway. Mol Med Rep 16:1957–1963

    Article  CAS  Google Scholar 

  27. Sartori R, Milan G, Patron M, Mammucari C, Blaauw B, Abraham R, Sandri M (2009) Smad2 and 3 transcription factors control muscle mass in adulthood. Am J Phys Cell Phys 296:1248–1257

    Article  Google Scholar 

  28. Takagiri T, Akiyama S, Namiki M et al (1997) Bone morphogenetic protein-2 inhibits terminal differentiation of myogenic cells by suppressing the transcriptional activity of MyoD and Myogenin. Exp Cell Res 230:342–351

    Article  Google Scholar 

  29. Lee SJ, McPherron AC (2001) Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci U S A 98:9306–9311

    Article  CAS  Google Scholar 

  30. McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle in mice by new TGF-β superfamily member. Nature 387:83–90

    Article  CAS  Google Scholar 

  31. Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J, Kambadur R (2000) Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem 275:40235–40243

    Article  CAS  Google Scholar 

  32. Zhang N, Ye L, Wu L, Deng X, Yang Y, Jiang WG (2013) Expression of bone morphogenetic protein-10 (BMP10) in human urothelial cancer of the bladder and its effects on the aggressiveness of bladder cancer cells in vitro. Anticancer Res 33:1917–1925

    CAS  PubMed  Google Scholar 

  33. Watt MJ, Hoy AJ (2012) Lipid metabolism in skeletal muscle: generation of adaptive and maladaptive intracellular signals for cellular function. Am J Physiol Endocrinol Metab 302:1315–1328

    Article  Google Scholar 

  34. Bruce CR, Hoy AJ, Turner N et al (2009) Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet-induced insulin resistance. Diabetes 58:550–558

    Article  CAS  Google Scholar 

  35. Evans RM, Barish GD, Wang YX (2004) PPARs and the complex journey to obesity. Nat Med 10:355–361

    Article  CAS  Google Scholar 

  36. Perdomo G, Commerford SR, Richard AM, Adams SH, Corkey BE, O’Doherty RM, Brown NF (2004) Increased beta-oxidation in muscle cells enhances insulin-stimulated glucose metabolism and protects against fatty acid-induced insulin resistance despite intramyocellular lipid accumulation. J Biol Chem 279:27177–27186

    Article  CAS  Google Scholar 

  37. Sartori R, Gregorevic P, Sandri M (2014) TGFβ and BMP signaling in skeletal muscle: potential significance for muscle-related disease. Trends Endocrinol Metab 25:464–471

    Article  CAS  Google Scholar 

  38. Winbanks CE, Weeks KL, Thomson RE et al (2012) Follistatin-mediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatin. J Cell Biol 197:997–1008

    Article  CAS  Google Scholar 

  39. Liu D, Kang JS, Derynck R (2004) TGF-beta-activated Smad3 represses MEF2-dependent transcription in myogenic differentiation. EMBO J 23:1557–1566

    Article  CAS  Google Scholar 

  40. Winbanks CE, Chen JL, Qian H et al (2013) The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass. J Cell Biol 203:345–357

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea grant funded by the Korean government (MSIT) (No. 2019R1A2C2002163).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Won Yun.

Ethics declarations

Conflict of interest

All authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, T.T., Yun, J.W. BMP10 positively regulates myogenic differentiation in C2C12 myoblasts via the Smad 1/5/8 signaling pathway. Mol Cell Biochem 476, 2085–2097 (2021). https://doi.org/10.1007/s11010-021-04064-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04064-x

Keywords

Navigation