Skip to main content
Log in

A study of hydrophobins-modified menaquinone-7 on osteoblastic cells differentiation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

A Correction to this article was published on 11 July 2023

This article has been updated

Abstract

Menaquinone-7 is involved in bone metabolism and can be used to prevent and treat osteoporosis. However, as a fat-soluble vitamin, menaquinone-7 has poor water solubility. As a surfactant, hydrophobins can change the affinity/hydrophobicity of the covered interface. In this study, menaquinone-7 was modified by hydrophobins, and the different addition ratios were explored. Moreover, Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and water contact angle (WCA) measurements indicated that hydrophobins effectively bind to menaquinone-7 and greatly increase the hydrophilicity of the surface of menaquinone-7. Studies on the metabolism of MC3T3-E1 cells showed that compared with native menaquinone-7, HGFI-modified menaquinone-7 can significantly promote osteoblast differentiation but inhibit osteoclast differentiation. Besides, the Mito-Tracker Green experiments show that HGFI-modified menaquinone-7 can significantly promote the activity of mitochondria in cells. These findings indicate that hydrophobins can be used as an effective biomaterial to modify menaquinone-7, promote the formation of osteoblasts, and better to bone balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Maeda T et al (2001) Simvastatin promotes osteoblast differentiation and mineralization in MC3T3-E1 cells. Biochem Biophys Res Commun 280(3):874–877

    Article  CAS  PubMed  Google Scholar 

  2. Huang ZB et al (2015) Does vitamin K2 play a role in the prevention and treatment of osteoporosis for postmenopausal women: a meta-analysis of randomized controlled trials. Osteoporos Int 26(3):1175–1186

    Article  CAS  PubMed  Google Scholar 

  3. Bunyaratavej N, Sila-Asna M, Bunyaratavej A (2009) The role of vitamin K2 on osteoblastic functions by using stem cell model. J Med Assoc Thailand Chotmaihet thangphaet 92(Suppl 5):S1-3

    Google Scholar 

  4. Myneni V, Mezey E (2017) Regulation of bone remodeling by vitamin K2. Oral Dis 23(8):1021–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Iwamoto J et al (2011) Effect of vitamin K2 on cortical and cancellous bone mass and hepatic lipids in rats with combined methionine-choline deficiency. Bone 48(5):1015–1021

    Article  CAS  PubMed  Google Scholar 

  6. Katsuyama H et al (2007) Menaquinone-7 regulates gene expression in osteoblastic MC3T3E1 cells. Int J Mol Med 19(2):279–284

    CAS  PubMed  Google Scholar 

  7. Forli L et al (2010) Dietary vitamin K2 supplement improves bone status after lung and heart transplantation. Transplantation 89(4):458–464

    Article  CAS  PubMed  Google Scholar 

  8. Narayanan PV (1994) Surface functionalization by rf plasma treatment of polymers for immobilization of bioactive-molecules. J Biomater Sci 6(2):181–193

    Article  CAS  Google Scholar 

  9. Wang Z et al (2010) Hydrophilic modification of polystyrene with hydrophobin for time-resolved immunofluorometric assay. Biosens Bioelectron 26(3):1074–1079

    Article  PubMed  Google Scholar 

  10. Roses AD (2004) Pharmacogenetics and drug development: the path to safer and more effective drugs. Nat Rev Genet 5(9):645–656

    Article  CAS  PubMed  Google Scholar 

  11. Patravale VB, Date AA, Kulkarni RM (2004) Nanosuspensions: a promising drug delivery strategy. J Pharm Pharmacol 56(7):827–840

    Article  CAS  PubMed  Google Scholar 

  12. Linder MB et al (2005) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29(5):877–896

    Article  CAS  PubMed  Google Scholar 

  13. Weickert U et al (2011) Optimizing biliary stent patency by coating with hydrophobin alone or hydrophobin and antibiotics or heparin: an in vitro proof of principle study. Adv Med Sci 56(2):138–144

    Article  CAS  PubMed  Google Scholar 

  14. Li XX et al (2009) Patterning of neural stem cells on poly(lactic-co-glycolic acid) film modified by hydrophobin. Colloids Surf B 74(1):370–374

    Article  CAS  Google Scholar 

  15. Linder MB et al (2004) Efficient purification of recombinant proteins using hydrophobins as tags in surfactant-based two-phase systems. Biochemistry 43(37):11873–11882

    Article  CAS  PubMed  Google Scholar 

  16. Milenic DE, Brady ED, Brechbiel MW (2004) Antibody-targeted radiation cancer therapy. Nat Rev Drug Discov 3(6):488–498

    Article  CAS  PubMed  Google Scholar 

  17. Sarparanta M et al (2012) Intravenous delivery of hydrophobin-functionalized porous silicon nanoparticles: stability, plasma protein adsorption and biodistribution. Mol Pharm 9(3):654–663

    Article  CAS  PubMed  Google Scholar 

  18. Valo H et al (2011) Immobilization of protein-coated drug nanoparticles in nanofibrillar cellulose matrices-enhanced stability and release. J Control Release 156(3):390–397

    Article  CAS  PubMed  Google Scholar 

  19. Wosten HAB, de Vocht ML (2000) Hydrophobins, the fungal coat unravelled. Biochem Biophys Acta 1469(2):79–86

    CAS  PubMed  Google Scholar 

  20. Fang ZW et al (2019) A simple and efficient preparative procedure for menaquinone-7 from Bacillus subtilis (natto) using two-stage extraction followed by microporous resins. Process Biochem 83:183–188

    Article  CAS  Google Scholar 

  21. Yu L et al (2008) Protein HGFI from the edible mushroom Grifola frondosa is a novel 8 kDa class I hydrophobin that forms rodlets in compressed monolayers. Microbiology 154:1677–1685

    Article  CAS  PubMed  Google Scholar 

  22. Nikolic NC, Stankovic MZ, Markovic DZ (2005) Liquid-liquid systems for acid hydrolysis of glycoalkaloids from Solanum tuberosum L. tuber sprouts and solanidine extraction. Med Sci Monit 11(7):BR200–BR205

    CAS  PubMed  Google Scholar 

  23. Yamaguchi M, Weitzmann MN (2011) Vitamin K2 stimulates osteoblastogenesis and suppresses osteoclastogenesis by suppressing NF-kappa B activation. Int J Mol Med 27(1):3–14

    CAS  PubMed  Google Scholar 

  24. Zhang F et al (2010) Compressive force stimulates the gene expression of IL-17s and their receptors in MC3T3-E1 cells. Connect Tissue Res 51(5):359–369

    Article  CAS  PubMed  Google Scholar 

  25. Akanbi MHJ et al (2010) Use of hydrophobins in formulation of water insoluble drugs for oral administration. Colloids Surf B 75(2):526–531

    Article  Google Scholar 

  26. Rasenack N, Steckel H, Muller BW (2003) Micronization of anti-inflammatory drugs for pulmonary delivery by a controlled crystallization process. J Pharm Sci 92(1):35–44

    Article  CAS  PubMed  Google Scholar 

  27. Zhao L et al (2016) Novel application of hydrophobin in medical science: a drug carrier for improving serum stability. Sci Rep 6:26461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zimmermann A et al (2009) Adsorption of pharmaceutical excipients onto microcrystals of siramesine hydrochloride: effects on physicochemical properties. Eur J Pharm Biopharm 71(1):109–116

    Article  CAS  PubMed  Google Scholar 

  29. Scholtmeijer K, Wessels JGH, Woster HAB (2001) Fungal hydrophobins in medical and technical applications. Appl Microbiol Biotechnol 56(1–2):1–8

    Article  CAS  PubMed  Google Scholar 

  30. Zhang M et al (2011) Immobilization of anti-CD31 antibody on electrospun poly(varepsilon-caprolactone) scaffolds through hydrophobins for specific adhesion of endothelial cells. Colloids Surf B 85(1):32–39

    Article  CAS  Google Scholar 

  31. Causa F et al (2010) Surface investigation on biomimetic materials to control cell adhesion: the case of RGD conjugation on PCL. Langmuir 26(12):9875–9884

    Article  CAS  PubMed  Google Scholar 

  32. Li F et al (2012) Echinacoside promotes bone regeneration by increasing OPG/RANKL ratio in MC3T3-E1 cells. Fitoterapia 83(8):1443–1450

    Article  CAS  PubMed  Google Scholar 

  33. Wu WJ et al (2019) A comparatively study of menaquinone-7 isolated from Cheonggukjang with vitamin K1 and menaquinone-4 on osteoblastic cells differentiation and mineralization. Food Chem Toxicol 131:110540

    Article  CAS  PubMed  Google Scholar 

  34. Zhu M et al (2017) Vitamin K2 analog menaquinone-7 shows osteoblastic bone formation activity in vitro. Biomed Res 28(3):1364–1369

    CAS  Google Scholar 

  35. Lamghari M (2006) Leptin effect on RANKL and OPG expression in MC3T3-E1 osteoblasts. J Bone Miner Res 21:S152–S152

    Google Scholar 

  36. Lu X et al (2020) PINK1 overexpression promotes cell migration and proliferation via regulation of autophagy and predicts a poor prognosis in lung cancer cases. Cancer Manag Res 12:7703–7714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang X et al (2020) Chondroitin sulfate from sturgeon bone protects rat chondrocytes from hydrogen peroxide-induced damage by maintaining cellular homeostasis through enhanced autophagy. Int J Biol Macromol 164:2761–2768

    Article  CAS  PubMed  Google Scholar 

  38. Wang S et al (2020) Excessive production of mitochondrion-derived reactive oxygen species induced by titanium ions leads to autophagic cell death of osteoblasts via the SIRT3/SOD2 pathway. Mol Med Rep 22(1):257–264

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tempelhagen L et al (2020) Cultivation at high osmotic pressure confers ubiquinone 8?independent protection of respiration on Escherichia coli (vol 295, pg 981, 2020). J Biol Chem 295(8):2542–2542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vos M et al (2012) Vitamin K-2 is a mitochondrial electron carrier that rescues pink1 deficiency. Science 336(6086):1306–1310

    Article  CAS  PubMed  Google Scholar 

  41. Bhalerao S, Clandinin TR (2012) Vitamin K-2 takes charge. Science 336(6086):1241–1242

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China [Grant Number 2019YFA0904300 (2019YFA0904304)], the Key research and development plan of Anhui Province (Grant Number 1804b06020342), the Natural Science Foundation of Anhui Province (Grant Nos. 1908085MB48, 1908085MB43), and the Anhui Province key research and development program (Grant Number 202004b11020014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiming Zheng or Peng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Zhu, Z., Zheng, Z. et al. A study of hydrophobins-modified menaquinone-7 on osteoblastic cells differentiation. Mol Cell Biochem 476, 1939–1948 (2021). https://doi.org/10.1007/s11010-021-04062-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04062-z

Keywords

Navigation