Skip to main content
Log in

Adenosine A2A receptor and vascular response: role of soluble epoxide hydrolase, adenosine A1 receptor and angiotensin-II

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Previously, we have reported that the coronary reactive hyperemic response was reduced in adenosine A2A receptor-null (A2AAR−/−) mice, and it was reversed by the soluble epoxide hydrolase (sEH) inhibitor. However, it is unknown in aortic vascular response, therefore, we hypothesized that A2AAR-gene deletion in mice (A2AAR−/−) affects adenosine-induced vascular response by increase in sEH and adenosine A1 receptor (A1AR) activities. A2AAR−/− mice showed an increase in sEH, AI AR and CYP450-4A protein expression but decrease in CYP450-2C compared to C57Bl/6 mice. NECA (adenosine-analog) and CCPA (adenosine A1 receptor-agonist)-induced dose-dependent vascular response was tested with t-AUCB (sEH-inhibitor) and angiotensin-II (Ang-II) in A2AAR−/− vs. C57Bl/6 mice. In A2AAR−/−, NECA and CCPA-induced increase in dose-dependent vasoconstriction compared to C57Bl/6 mice. However, NECA and CCPA-induced dose-dependent vascular contraction in A2AAR−/− was reduced by t-AUCB with NECA. Similarly, dose-dependent vascular contraction in A2AAR−/− was reduced by t-AUCB with CCPA. In addition, Ang-II enhanced NECA and CCPA-induced dose-dependent vascular contraction in A2AAR−/− with NECA. Similarly, the dose-dependent vascular contraction in A2AAR−/− was also enhanced by Ang-II with CCPA. Further, t-AUCB reduced Ang-II-enhanced NECA and CCPA-induced dose-dependent vascular contraction in A2AAR−/− mice. Our data suggest that the dose-dependent vascular contraction in A2AAR−/− mice depends on increase in sEH, A1AR and CYP4A protein expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    CAS  PubMed  Google Scholar 

  2. Nayeem MA, Zeldin DC, Boegehold MA, Morisseau C, Marowsky A, Ponnoth DS, Roush KP, Falck JR (2010) Modulation by salt intake of the vascular response mediated through adenosine A(2A) receptor: role of CYP epoxygenase and soluble epoxide hydrolase. Am J Physiol Regul Integr Comp Physiol 299:R325–R333. https://doi.org/10.1152/ajpregu.00823.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nayeem MA, Zeldin DC, Boegehold MA, Falck JR (2011) Salt modulates vascular response through adenosine A(2A) receptor in eNOS-null mice: role of CYP450 epoxygenase and soluble epoxide hydrolase. Mol Cell Biochem 350:101–111. https://doi.org/10.1007/s11010-010-0686-0

    Article  CAS  PubMed  Google Scholar 

  4. Hanif A, Edin ML, Zeldin DC, Morisseau C, Falck JR, Ledent C, Tilley SL, Nayeem MA (2017) Reduced coronary reactive hyperemia in mice was reversed by the soluble epoxide hydrolase inhibitor (t-AUCB): Role of adenosine A2A receptor and plasma oxylipins. Prostaglandins Other Lipid Mediat 131:83–95. https://doi.org/10.1016/j.prostaglandins.2017.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jackson EK, Zhu C, Tofovic SP (2002) Expression of adenosine receptors in the preglomerular microcirculation. Am J Physiol Renal Physiol 283:F41-51

    Article  CAS  Google Scholar 

  6. Nayeem MA, Mustafa SJ (2002) Protein kinase C isoforms and A1 adenosine receptors in porcine coronary smooth muscle cells. Vasc Pharmacol 39:47–54

    Article  CAS  Google Scholar 

  7. Nayeem MA, Mustafa SJ (2002) Mechanisms of delayed preconditioning with A1 adenosine receptor activation in porcine coronary smooth muscle cells. Pol J Pharmacol 54:443–453

    CAS  PubMed  Google Scholar 

  8. Nayeem MA, Matherne GP, Mustafa SJ (2003) Ischemic and pharmacological preconditioning induces further delayed protection in transgenic mouse cardiac myocytes over-expressing adenosine A1 receptors (A1AR): role of A1AR, iNOS and K(ATP) channels. Naunyn Schmiedebergs Arch Pharmacol 367:219–226

    Article  CAS  Google Scholar 

  9. Nayeem MA, Poloyac SM, Falck JR, Zeldin DC, Ledent C, Ponnoth DS, Ansari HR, Mustafa SJ (2008) Role of CYP epoxygenases in A2A AR-mediated relaxation using A2A AR-null and wild-type mice. Am J Physiol Heart Circ Physiol 295:H2068–H2078

    Article  CAS  Google Scholar 

  10. Foschetti DA, Braga-Neto MB, Bolick D, Moore J, Alves LA, Martins CS, Bomfin LE, Santos A, Leitao R, Brito G, Warren CA (2020) Clostridium difficile toxins or infection induce upregulation of adenosine receptors and IL-6 with early pro-inflammatory and late anti-inflammatory pattern. Braz J Med Biol Res 53:e9877. https://doi.org/10.1590/1414-431x20209877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu Y, Ma Y, Du B, Wang Y, Yang GY, Bi X (2020) Mesenchymal stem cells attenuated blood-brain barrier disruption via downregulation of aquaporin-4 expression in EAE mice. Mol Neurobiol 57:3891–3901. https://doi.org/10.1007/s12035-020-01998-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yadav VR, Hong KL, Zeldin DC, Nayeem MA (2016) Vascular endothelial over-expression of soluble epoxide hydrolase (Tie2-sEH) enhances adenosine A1 receptor-dependent contraction in mouse mesenteric arteries: role of ATP-sensitive K+ channels. Mol Cell Biochem 422:197–206. https://doi.org/10.1007/s11010-016-2821-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khayat MTHA, Geldenhuys WJ, Nayeem MA (2018) Adenosine receptors and drug discovery in the cardiovascular system. Front Cardiovasc Drug Discov 4:49. https://doi.org/10.2174/9781681083995118040003

    Article  Google Scholar 

  14. Nayeem MA, Pradhan I, Mustafa SJ, Morisseau C, Falck JR, Zeldin DC (2013) Adenosine A2A receptor modulates vascular response in soluble epoxide hydrolase-null mice through CYP-epoxygenases and PPARgamma. Am J Physiol Regul Integr Comp Physiol 304:R23-32. https://doi.org/10.1152/ajpregu.00213.2012

    Article  CAS  PubMed  Google Scholar 

  15. Khayat MT, Nayeem MA (2017) The role of adenosine A2A receptor, CYP450s, and PPARs in the regulation of vascular tone. Biomed Res Int 2017:1720920. https://doi.org/10.1155/2017/1720920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kunduri SS, Mustafa SJ, Ponnoth DS, Dick GM, Nayeem MA (2013) Adenosine A1 receptors link to smooth muscle contraction via CYP4a, protein kinase C-alpha, and ERK1/2. J Cardiovasc Pharmacol 62:78–83. https://doi.org/10.1097/FJC.0b013e3182919591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pearl RG (1994) Adenosine produces pulmonary vasodilation in the perfused rabbit lung via an adenosine A2 receptor. Anesth Analg 79:46–51

    Article  CAS  Google Scholar 

  18. Martin PL, Potts AA (1994) The endothelium of the rat renal artery plays an obligatory role in A2 adenosine receptor-mediated relaxation induced by 5’-N-ethylcarboxamidoadenosine and N6-cyclopentyladenosine. J Pharmacol Exp Ther 270:893–899

    CAS  PubMed  Google Scholar 

  19. Urakami-Harasawa L, Shimokawa H, Nakashima M, Egashira K, Takeshita A (1997) Importance of endothelium-derived hyperpolarizing factor in human arteries. J Clin Invest 100:2793–2799. https://doi.org/10.1172/JCI119826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Busse R, Edwards G, Feletou M, Fleming I, Vanhoutte PM, Weston AH (2002) EDHF: bringing the concepts together. Trends Pharmacol Sci 23:374–380

    Article  CAS  Google Scholar 

  21. Campbell WB, Gebremedhin D, Pratt PF, Harder DR (1996) Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ Res 78:415–423

    Article  CAS  Google Scholar 

  22. Fisslthaler B, Popp R, Kiss L, Potente M, Harder DR, Fleming I, Busse R (1999) Cytochrome P450 2C is an EDHF synthase in coronary arteries. Nature 401:493–497

    Article  CAS  Google Scholar 

  23. Capdevila JH, Falck JR, Harris RC (2000) Cytochrome P450 and arachidonic acid bioactivation. Molecular and functional properties of the arachidonate monooxygenase. J Lipid Res 41:163–181

    Article  CAS  Google Scholar 

  24. Oltman CL, Weintraub NL, VanRollins M, Dellsperger KC (1998) Epoxyeicosatrienoic acids and dihydroxyeicosatrienoic acids are potent vasodilators in the canine coronary microcirculation. Circ Res 83:932–939

    Article  CAS  Google Scholar 

  25. Sarkis A, Lopez B, Roman RJ (2004) Role of 20-hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acids in hypertension. Curr Opin Nephrol Hypertens 13:205–214

    Article  CAS  Google Scholar 

  26. Hanif A, Edin ML, Zeldin DC, Morisseau C, Falck JR, Nayeem MA (2017) Vascular endothelial over-expression of human soluble epoxide hydrolase (Tie2-sEH Tr) attenuates coronary reactive hyperemia in mice: role of oxylipins and omega-hydroxylases. PLoS ONE 12:e0169584. https://doi.org/10.1371/journal.pone.0169584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Spector AA, Fang X, Snyder GD, Weintraub NL (2004) Epoxyeicosatrienoic acids (EETs): metabolism and biochemical function. Prog Lipid Res 43:55–90

    Article  CAS  Google Scholar 

  28. Hanif A, Edin ML, Zeldin DC, Morisseau C, Nayeem MA (2016) Effect of soluble epoxide hydrolase on the modulation of coronary reactive hyperemia: role of oxylipins and PPARgamma. PLoS ONE 11:e0162147. https://doi.org/10.1371/journal.pone.0162147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hanif A, Edin ML, Zeldin DC, Morisseau C, Nayeem MA (2016) Deletion of soluble epoxide hydrolase enhances coronary reactive hyperemia in isolated mouse heart: role of oxylipins and PPARgamma. Am J Physiol Regul Integr Comp Physiol 311:R676–R688. https://doi.org/10.1152/ajpregu.00237.2016

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hanif A, Edin ML, Zeldin DC, Nayeem MA (2020) Ephx2-gene deletion affects acetylcholine-induced relaxation in angiotensin-II infused mice: role of nitric oxide and CYP-epoxygenases. Mol Cell Biochem 465:37–51. https://doi.org/10.1007/s11010-019-03665-x

    Article  CAS  PubMed  Google Scholar 

  31. Oyekan AO, McAward K, McGiff JC (1998) Renal functional effects of endothelins: dependency on cytochrome P450-derived arachidonate metabolites. Biol Res 31:209–215

    CAS  PubMed  Google Scholar 

  32. Oyekan AO, McGiff JC (1998) Functional response of the rat kidney to inhibition of nitric oxide synthesis: role of cytochrome p450-derived arachidonate metabolites. Br J Pharmacol 125:1065–1073

    Article  CAS  Google Scholar 

  33. Croft KD, McGiff JC, Sanchez-Mendoza A, Carroll MA (2000) Angiotensin II releases 20-HETE from rat renal microvessels. Am J Physiol Renal Physiol 279:F544–F551

    Article  CAS  Google Scholar 

  34. Harder DR, Roman RJ, Gebremedhin D (2000) Molecular mechanisms controlling nutritive blood flow: role of cytochrome P450 enzymes. Acta Physiol Scand 168:543–549

    Article  CAS  Google Scholar 

  35. Maier KG, Roman RJ (2001) Cytochrome P450 metabolites of arachidonic acid in the control of renal function. Curr Opin Nephrol Hypertens 10:81–87

    Article  CAS  Google Scholar 

  36. McGiff JC, Quilley J (1999) 20-HETE and the kidney: resolution of old problems and new beginnings. Am J Physiol 277:R607–R623

    CAS  PubMed  Google Scholar 

  37. Ledent C, Vaugeois JM, Schiffmann SN, Pedrazzini T, El Yacoubi M, Vanderhaeghen JJ, Costentin J, Heath JK, Vassart G, Parmentier M (1997) Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature 388:674–678

    Article  CAS  Google Scholar 

  38. Agba S, Hanif A, Edin ML, Zeldin DC, Nayeem MA (2020) Cyp2j5-gene deletion affects on acetylcholine and adenosine-induced relaxation in mice: role of angiotensin-II and CYP-epoxygenase inhibitor. Front Pharmacol 11:27. https://doi.org/10.3389/fphar.2020.00027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nayeem MA, Ponnoth DS, Boegehold MA, Zeldin DC, Falck JR, Mustafa SJ (2009) High-salt diet enhances mouse aortic relaxation through adenosine A2A receptor via CYP epoxygenases. Am J Physiol Regul Integr Comp Physiol 296:R567–R574

    Article  CAS  Google Scholar 

  40. Nayeem MA, Elliott GT, Shah MR, Hastillo-Hess SL, Kukreja RC (1997) Monophosphoryl lipid A protects adult rat cardiac myocytes with induction of the 72-kD heat shock protein: a cellular model of pharmacologic preconditioning. J Mol Cell Cardiol 29:2305–2310

    Article  CAS  Google Scholar 

  41. Nayeem MA, Hess ML, Qian YZ, Loesser KE, Kukreja RC (1997) Delayed preconditioning of cultured adult rat cardiac myocytes: role of 70- and 90-kDa heat stress proteins. Am J Physiol 273:H861–H868

    CAS  PubMed  Google Scholar 

  42. Ai D, Fu Y, Guo D, Tanaka H, Wang N, Tang C, Hammock BD, Shyy JY, Zhu Y (2007) Angiotensin II up-regulates soluble epoxide hydrolase in vascular endothelium in vitro and in vivo. Proc Natl Acad Sci USA 104:9018–9023. https://doi.org/10.1073/pnas.0703229104

    Article  CAS  PubMed  Google Scholar 

  43. Lu Y, Zhang R, Ge Y, Carlstrom M, Wang S, Fu Y, Cheng L, Wei J, Roman RJ, Wang L, Gao X, Liu R (2015) Identification and function of adenosine A3 receptor in afferent arterioles. Am J Physiol Renal Physiol 308:F1020–F1025. https://doi.org/10.1152/ajprenal.00422.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nishat S, Klinke A, Baldus S, Khan LA, Basir SF (2014) Increased A3AR-dependent vasoconstriction in diabetic mice is promoted by myeloperoxidase. J Cardiovasc Pharmacol 64:465–472. https://doi.org/10.1097/FJC.0000000000000139

    Article  CAS  PubMed  Google Scholar 

  45. Yadav VR, Nayeem MA, Tilley SL, Mustafa SJ (2015) Angiotensin II stimulation alters vasomotor response to adenosine in mouse mesenteric artery: role for A1 and A2B adenosine receptors. Br J Pharmacol 172:4959–4969. https://doi.org/10.1111/bph.13265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kemp BK, Cocks TM (1999) Adenosine mediates relaxation of human small resistance-like coronary arteries via A2B receptors. Br J Pharmacol 126:1796–1800. https://doi.org/10.1038/sj.bjp.0702462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Toth P, Csiszar A, Tucsek Z, Sosnowska D, Gautam T, Koller A, Schwartzman ML, Sonntag WE, Ungvari Z (2013) Role of 20-HETE, TRPC channels, and BKCa in dysregulation of pressure-induced Ca2+ signaling and myogenic constriction of cerebral arteries in aged hypertensive mice. Am J Physiol Heart Circ Physiol 305:H1698–H1708. https://doi.org/10.1152/ajpheart.00377.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Seubert JM, Xu F, Graves JP, Collins JB, Sieber SO, Paules RS, Kroetz DL, Zeldin DC (2005) Differential renal gene expression in prehypertensive and hypertensive spontaneously hypertensive rats. Am J Physiol Renal Physiol 289:F552–F561

    Article  CAS  Google Scholar 

  49. Honetschlagerova Z, Sporkova A, Kopkan L, Huskova Z, Hwang SH, Hammock BD, Imig JD, Kramer HJ, Kujal P, Vernerova Z, Chabova VC, Tesar V, Cervenka L (2011) Inhibition of soluble epoxide hydrolase improves the impaired pressure-natriuresis relationship and attenuates the development of hypertension and hypertension-associated end-organ damage in Cyp1a1-Ren-2 transgenic rats. J Hypertens 29:1590–1601. https://doi.org/10.1097/HJH.0b013e328349062f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work supported by National Institutes of Health Grant HL-114559 to M. A. Nayeem, we are very much thankful to Ms. Brandy J. Wilmoth, B.S., RVT (Biology Technician) for performing tissue bath experiments.

Funding

National Institutes of Health (HL-114559) to M. A. Nayeem supported this work.

Author information

Authors and Affiliations

Authors

Contributions

MAN conception, design of research, performing experiments, analysis drafting and editing; AH and SA were cooperating in the experimentations, reading, correction, editing and input; CL and SLT provided transgenic mice; CM provided the t-AUCB.

Corresponding author

Correspondence to Mohammed A. Nayeem.

Ethics declarations

Conflict of interest

The authors report that there is no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanif, A., Agba, S.O., Ledent, C. et al. Adenosine A2A receptor and vascular response: role of soluble epoxide hydrolase, adenosine A1 receptor and angiotensin-II. Mol Cell Biochem 476, 1965–1978 (2021). https://doi.org/10.1007/s11010-021-04049-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04049-w

Keywords

Navigation