Skip to main content
Log in

Moderate oxidative stress promotes epithelial–mesenchymal transition in the lens epithelial cells via the TGF-β/Smad and Wnt/β-catenin pathways

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The epithelial–mesenchymal transition (EMT) plays a significant role in fibrosis and migration of lens epithelial cells (LECs), and eventually induces posterior capsule opacification (PCO). In the past, it was generally believed that the TGF-β/Smad pathway regulates lens EMT. A recent study found that attenuated glutathione level promotes LECs EMT via the Wnt/β-catenin pathway, which suggests a more complex pathogenesis of PCO. To test the hypothesis, we used the mouse cataract surgery PCO model and tested both canonical Wnt/β-catenin and TGF-β/Smad signaling pathways. The results showed that both TGF-β/Smad and Wnt/β-catenin pathways were activated during the lens capsule fibrosis. Compared with the freshly isolated posterior capsule, the expression level of phosphorylated Smad2 was highest at day3 and then slightly decreased, but the expression level of Wnt10a gradually increased from day0 to day7. It shows that these two pathways are involved in the lens epithelium’s fibrotic process and may play different roles in different periods. Subsequently, we established oxidative stress-induced EMT model in primary porcine lens epithelial cells and found that both the TGF-β/Smad and Wnt/β-catenin pathways were activated. Further study suggests that block Wnt/β-catenin pathway using XAV939 alone or block TGF-β/Smad pathway using LY2109761 could partially block pLECs fibrosis, but blocking Wnt/β-catenin and TGF-β/Smad pathway using combined XAV939 and LY2109761 could completely block pLECs fibrosis. In conclusion, this study demonstrates that both TGF-β/Smad and canonical Wnt/β-catenin pathways play a significant role in regulating epithelial–mesenchymal transformation of lens epithelial cells but might be in a different stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

The analyzed datasets generated during the study are available from the corresponding author on reasonable request.

Abbreviations

EMT:

Epithelial–mesenchymal transition

LECs:

Lens epithelial cells

pLECs:

Porcine lens epithelial cells

PCO:

Posterior capsule opacification

IOL:

Intraocular lens

H2O2 :

Hydrogen peroxide

BSO:

Buthionine sulfoximine

TGF-β:

Transforming growth factor β

GSK-3β:

Glycogen synthase kinase 3β

APC:

Adenomatous polyposis coli

CK1:

Casein kinase 1

LRP6:

Low-density lipoprotein receptor-related protein 6

α-SMA:

α-smooth muscle actin

References

  1. Menon GJ, Wong KK, Bundhun T, Ewings P, Twomey JM (2009) The effect of Nd:YAG laser posterior capsulotomy on stereoacuity. Eye (Lond) 23(1):186–189. https://doi.org/10.1038/sj.eye.6702932

    Article  CAS  Google Scholar 

  2. Eldred JA, Dawes LJ, Wormstone IM (2011) The lens as a model for fibrotic disease. Philos Trans R Soc Lond Ser B Biol Sci 366(1568):1301–1319. https://doi.org/10.1098/rstb.2010.0341

    Article  CAS  Google Scholar 

  3. Vasavada AR, Praveen MR, Tassignon MJ, Shah SK, Vasavada VA, Vasavada VA, Van Looveren J, De Veuster I, Trivedi RH (2011) Posterior capsule management in congenital cataract surgery. J Cataract Refract Surg 37(1):173–193. https://doi.org/10.1016/j.jcrs.2010.10.036

    Article  PubMed  Google Scholar 

  4. Von Tress M, Marotta JS, Lane SS, Sarangapani R (2018) A meta-analysis of Nd:YAG capsulotomy rates for two hydrophobic intraocular lens materials. Clin Ophthalmol 12:1125–1136. https://doi.org/10.2147/OPTH.S161380

    Article  Google Scholar 

  5. Ursell PG, Dhariwal M, Majirska K, Ender F, Kalson-Ray S, Venerus A, Miglio C, Bouchet C (2018) Three-year incidence of Nd:YAG capsulotomy and posterior capsule opacification and its relationship to monofocal acrylic IOL biomaterial: a UK Real World Evidence study. Eye (Lond) 32(10):1579–1589. https://doi.org/10.1038/s41433-018-0131-2

    Article  Google Scholar 

  6. Mester U, Sauer T, Kaymak H (2009) Decentration and tilt of a single-piece aspheric intraocular lens compared with the lens position in young phakic eyes. J Cataract Refract Surg 35(3):485–490. https://doi.org/10.1016/j.jcrs.2008.09.028

    Article  PubMed  Google Scholar 

  7. Cinar E, Yuce B, Aslan F, Erbakan G, Kucukerdonmez C (2019) Intraocular lens tilt and decentration after Nd:YAG laser posterior capsulotomy: femtosecond laser capsulorhexis versus manual capsulorhexis. J Cataract Refract Surg 45(11):1637–1644. https://doi.org/10.1016/j.jcrs.2019.07.017

    Article  PubMed  Google Scholar 

  8. Whitson JA, Sell DR, Goodman MC, Monnier VM, Fan X (2016) Evidence of dual mechanisms of glutathione uptake in the rodent lens: a novel role for vitreous humor in lens glutathione homeostasis. Invest Ophthalmol Vis Sci 57(8):3914–3925. https://doi.org/10.1167/iovs.16-19592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ma B, Yang L, Jing R, Liu J, Quan Y, Hui Q, Li J, Qin L, Pei C (2018) Effects of Interleukin-6 on posterior capsular opacification. Exp Eye Res 172:94–103. https://doi.org/10.1016/j.exer.2018.03.013

    Article  CAS  PubMed  Google Scholar 

  10. Wormstone IM (2019) The human capsular bag model of posterior capsule opacification. Eye 34(2):225–231. https://doi.org/10.1038/s41433-019-0680-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu J, Yan XL, Zheng XL, Mei L, Wang S, Han J, Yan H (2017) Electric field exposure promotes epithelial-mesenchymal transition in human lens epithelial cells via integrin β1-FAK signaling. Mol Med Rep 16(4):4008–4014. https://doi.org/10.3892/mmr.2017.7086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mei L, Yan H, Wang S, Guo C, Zheng X, Yan B, Zhao J, Yang A (2020) Upregulation of miR-630 induced by oxidative damage resists cell migration through targeting ALCAM in human Lens epithelium cells. Curr Eye Res 45(2):153–161. https://doi.org/10.1080/02713683.2019.1656748

    Article  CAS  PubMed  Google Scholar 

  13. Saika S, Okada Y, Miyamoto T, Ohnishi Y, Ooshima A, McAvoy JW (2001) Smad translocation and growth suppression in lens epithelial cells by endogenous TGFbeta2 during wound repair. Exp Eye Res 72(6):679–686. https://doi.org/10.1006/exer.2001.1002

    Article  CAS  PubMed  Google Scholar 

  14. Kubo E, Shibata T, Singh DP, Sasaki H (2018) Roles of TGF beta and FGF signals in the lens: tropomyosin regulation for posterior capsule opacity. Int J Mol Sci 19(10):3093. https://doi.org/10.3390/ijms19103093

    Article  CAS  PubMed Central  Google Scholar 

  15. Lovicu FJ, Shin EH, McAvoy JW (2016) Fibrosis in the lens. Sprouty regulation of TGFbeta-signaling prevents lens EMT leading to cataract. Exp Eye Res 142:92–101. https://doi.org/10.1016/j.exer.2015.02.004

    Article  CAS  PubMed  Google Scholar 

  16. Marcantonio JM, Syam PP, Liu CSC, Duncan G (2003) Epithelial transdifferentiation and cataract in the human lens. Exp Eye Res 77(3):339–346. https://doi.org/10.1016/s0014-4835(03)00125-8

    Article  CAS  PubMed  Google Scholar 

  17. Raghavan CT, Smuda M, Smith AJ, Howell S, Smith DG, Singh A, Gupta P, Glomb MA, Wormstone IM, Nagaraj RH (2016) AGEs in human lens capsule promote the TGFbeta2-mediated EMT of lens epithelial cells: implications for age-associated fibrosis. Aging Cell 15(3):465–476. https://doi.org/10.1111/acel.12450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ishibashi T, Hatae T, Inomata H (1994) Collagen types in human posterior capsule opacification. J Cataract Refract Surg 20(6):643–646. https://doi.org/10.1016/s0886-3350(13)80655-4

    Article  CAS  PubMed  Google Scholar 

  19. Linnola RJ, Werner L, Pandey SJ, Escobar-Gomez M, Znoiko SL, Apple DJ (2000) Adhesion of fibronectin, vitronectin, laminin, and collagen type IV to intraocular lens materials in pseudophakic human autopsy eyes. Part 2: Explanted intraocular lenses. J Cataract Refract Surg 26(12):1807–1818. https://doi.org/10.1016/s0886-3350(00)00747-1

    Article  CAS  PubMed  Google Scholar 

  20. Yang H, Wang L, Zhao J, Chen Y, Lei Z, Liu X, Xia W, Guo L, Zhang HT (2015) TGF-beta-activated SMAD3/4 complex transcriptionally upregulates N-cadherin expression in non-small cell lung cancer. Lung Cancer 87(3):249–257. https://doi.org/10.1016/j.lungcan.2014.12.015

    Article  PubMed  Google Scholar 

  21. Tanaka T, Goto K, Iino M (2017) Sec8 modulates TGF-beta induced EMT by controlling N-cadherin via regulation of Smad3/4. Cell Signal 29:115–126. https://doi.org/10.1016/j.cellsig.2016.10.007

    Article  CAS  PubMed  Google Scholar 

  22. Yao J, Yang W, Liu Y, Sun YX, Jiang Q (2012) Dexamethasone inhibits TGF-beta2-induced migration of human lens epithelial cells: implications for posterior capsule opacification prevention. Mol Med Rep 5(6):1509–1513. https://doi.org/10.3892/mmr.2012.827

    Article  CAS  PubMed  Google Scholar 

  23. Dawes LJ, Sleeman MA, Anderson IK, Reddan JR, Wormstone IM (2009) TGFbeta/Smad4-dependent and -independent regulation of human lens epithelial cells. Invest Ophthalmol Vis Sci 50(11):5318–5327. https://doi.org/10.1167/iovs.08-3223

    Article  PubMed  Google Scholar 

  24. Taiyab A, Holms J, West-Mays JA (2019) β-catenin/Smad3 interaction regulates transforming growth factor-β-induced epithelial to mesenchymal transition in the lens. Int J Mol Sci 20(9):2078. https://doi.org/10.3390/ijms20092078

    Article  CAS  PubMed Central  Google Scholar 

  25. Lois N, Taylor J, McKinnon AD, Smith GC, van't Hof R, Forrester JV (2005) Effect of TGF-beta2 and anti-TGF-beta2 antibody in a new in vivo rodent model of posterior capsule opacification. Invest Ophthalmol Vis Sci 46(11):4260–4266. https://doi.org/10.1167/iovs.05-0168

    Article  PubMed  Google Scholar 

  26. Jiang J, Shihan MH, Wang Y, Duncan MK (2018) Lens epithelial cells initiate an inflammatory response following cataract surgery. Invest Ophthalmol Vis Sci 59(12):4986–4997. https://doi.org/10.1167/iovs.18-25067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Buehl W, Findl O, Neumayer T, Georgopoulos M, Sacu S (2005) Short-term changes in the morphology of posterior capsule opacification. J Cataract Refract Surg 31(5):962–968. https://doi.org/10.1016/j.jcrs.2004.08.051

    Article  PubMed  Google Scholar 

  28. Neumayer T, Findl O, Buehl W, Sacu S, Menapace R, Georgopoulos M (2005) Long-term changes in the morphology of posterior capsule opacification. J Cataract Refract Surg 31(11):2120–2128. https://doi.org/10.1016/j.jcrs.2005.04.038

    Article  PubMed  Google Scholar 

  29. Wei Z, Caty J, Whitson J, Zhang AD, Srinivasagan R, Kavanagh TJ, Yan H, Fan X (2017) Reduced glutathione level promotes epithelial-mesenchymal transition in Lens epithelial cells via a Wnt/beta-catenin-mediated pathway: Relevance for cataract therapy. Am J Pathol 187(11):2399–2412. https://doi.org/10.1016/j.ajpath.2017.07.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149(6):1192–1205. https://doi.org/10.1016/j.cell.2012.05.012

    Article  CAS  PubMed  Google Scholar 

  31. Guo Y, Xiao L, Sun L, Liu F (2012) Wnt/beta-catenin signaling: a promising new target for fibrosis diseases. Physiol Res 61(4):337–346. https://doi.org/10.33549/physiolres.932289

    Article  CAS  PubMed  Google Scholar 

  32. Chen W, ten Berge D, Brown J, Ahn S, Hu LA, Miller WE, Caron MG, Barak LS, Nusse R, Lefkowitz RJ (2003) Dishevelled 2 recruits beta-arrestin 2 to mediate Wnt5A-stimulated endocytosis of Frizzled 4. Science 301(5638):1391–1394. https://doi.org/10.1126/science.1082808

    Article  CAS  PubMed  Google Scholar 

  33. Arend RC, Londono-Joshi AI, Straughn JM Jr, Buchsbaum DJ (2013) The Wnt/beta-catenin pathway in ovarian cancer: a review. Gynecol Oncol 131(3):772–779. https://doi.org/10.1016/j.ygyno.2013.09.034

    Article  CAS  PubMed  Google Scholar 

  34. Macdonald BT, Semenov MV, He X (2007) SnapShot: Wnt/beta-catenin signaling. Cell 131(6):1204. https://doi.org/10.1016/j.cell.2007.11.036

    Article  CAS  PubMed  Google Scholar 

  35. Craene BD, Berx G (2013) Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 13(2):97–110. https://doi.org/10.1038/nrc3447

    Article  CAS  PubMed  Google Scholar 

  36. Anastas JN, Moon RT (2013) WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 13(1):11–26. https://doi.org/10.1038/nrc3419

    Article  CAS  PubMed  Google Scholar 

  37. Nishikawa K, Osawa Y, Kimura K (2018) Wnt/beta-catenin signaling as a potential target for the treatment of liver cirrhosis using antifibrotic drugs. Int J Mol Sci 19(10):3103. https://doi.org/10.3390/ijms19103103

    Article  CAS  PubMed Central  Google Scholar 

  38. Feng Y, Ren J, Gui Y, Wei W, Shu B, Lu Q, Xue X, Sun X, He W, Yang J, Dai C (2018) Wnt/beta-catenin-promoted macrophage alternative activation contributes to kidney fibrosis. J Am Soc Nephrol 29(1):182–193. https://doi.org/10.1681/ASN.2017040391

    Article  CAS  PubMed  Google Scholar 

  39. Xu L, Cui WH, Zhou WC, Li DL, Li LC, Zhao P, Mo XT, Zhang Z, Gao J (2017) Activation of Wnt/beta-catenin signalling is required for TGF-beta/Smad2/3 signalling during myofibroblast proliferation. J Cell Mol Med 21(8):1545–1554. https://doi.org/10.1111/jcmm.13085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner S, Hild M, Shi X, Wilson CJ, Mickanin C, Myer V, Fazal A, Tomlinson R, Serluca F, Shao W, Cheng H, Shultz M, Rau C, Schirle M, Schlegl J, Ghidelli S, Fawell S, Lu C, Curtis D, Kirschner MW, Lengauer C, Finan PM, Tallarico JA, Bouwmeester T, Porter JA, Bauer A, Cong F (2009) Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461(7264):614–620. https://doi.org/10.1038/nature08356

    Article  CAS  PubMed  Google Scholar 

  41. Wang Y, Mahesh P, Wang Y, Novo SG, Shihan MH, Hayward-Piatkovskyi B, Duncan MK (2018) Spatiotemporal dynamics of canonical Wnt signaling during embryonic eye development and posterior capsular opacification (PCO). Exp Eye Res 175:148–158. https://doi.org/10.1016/j.exer.2018.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Saika S, Miyamoto T, Ishida I, Shirai K, Ohnishi Y, Ooshima A, McAvoy JW (2002) TGFbeta-Smad signalling in postoperative human lens epithelial cells. Br J Ophthalmol 86(12):1428–1433. https://doi.org/10.1136/bjo.86.12.1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tiwari A, Ram J, Luthra-Guptasarma M (2014) Targeting the fibronectin type III repeats in tenascin-C inhibits epithelial-mesenchymal transition in the context of posterior capsular opacification. Invest Ophthalmol Vis Sci 56(1):272–283. https://doi.org/10.1167/iovs.14-14934

    Article  CAS  PubMed  Google Scholar 

  44. Ma B, Jing R, Liu J, Qi T, Pei C (2019) Gremlin is a potential target for posterior capsular opacification. Cell Cycle 18(15):1714–1726. https://doi.org/10.1080/15384101.2019.1632125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wernecke L, Keckeis S, Reichhart N, Strauss O, Salchow DJ (2018) Epithelial-mesenchymal transdifferentiation in pediatric lens epithelial cells. Invest Ophthalmol Vis Sci 59(15):5785–5794. https://doi.org/10.1167/iovs.18-23789

    Article  CAS  PubMed  Google Scholar 

  46. Piersma B, Bank RA, Boersema M (2015) Signaling in fibrosis: TGF-β, WNT, and YAP/TAZ converge. Front Med (Lausanne) 2:59. https://doi.org/10.3389/fmed.2015.00059

    Article  Google Scholar 

  47. Liu T, Zhang L, Wang Y, Zhang H, Li L, Bao X (2017) Dickkopf-1 inhibits Wnt3a-induced migration and epithelial-mesenchymal transition of human lens epithelial cells. Exp Eye Res 161:43–51. https://doi.org/10.1016/j.exer.2017.06.001

    Article  CAS  PubMed  Google Scholar 

  48. Petersen A, Zetterberg M (2016) The immunoproteasome in human lens epithelial cells during oxidative stress. Invest Ophthalmol Vis Sci 57(11):5038–5045. https://doi.org/10.1167/iovs.16-19536

    Article  CAS  PubMed  Google Scholar 

  49. Cheresh P, Kim SJ, Tulasiram S, Kamp DW (2013) Oxidative stress and pulmonary fibrosis. Biochim Biophys Acta 1832(7):1028–1040. https://doi.org/10.1016/j.bbadis.2012.11.021

    Article  CAS  PubMed  Google Scholar 

  50. Cipak Gasparovic A, Milkovic L, Dandachi N, Stanzer S, Pezdirc I, Vrancic J, Sitic S, Suppan C, Balic M (2019) Chronic oxidative stress promotes molecular changes associated with epithelial mesenchymal transition, nrf2, and breast cancer stem cell phenotype. Antioxidants (Basel) 8(12):633. https://doi.org/10.3390/antiox8120633

    Article  CAS  Google Scholar 

  51. Chang YW, Singh KP (2019) Nicotine-induced oxidative stress contributes to EMT and stemness during neoplastic transformation through epigenetic modifications in human kidney epithelial cells. Toxicol Appl Pharmacol 374:65–76. https://doi.org/10.1016/j.taap.2019.04.023

    Article  CAS  PubMed  Google Scholar 

  52. Huang W, Yu D, Wang M, Han Y, Lin J, Wei D, Cai J, Li B, Chen P, Zhang X (2020) ITGBL1 promotes cell migration and invasion through stimulating the TGF-beta signalling pathway in hepatocellular carcinoma. Cell Prolif 53(7):e12836. https://doi.org/10.1111/cpr.12836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shetti D, Zhang B, Fan C, Mo C, Lee BH, Wei K (2019) Low dose of paclitaxel combined with XAV939 attenuates metastasis, angiogenesis and growth in breast cancer by suppressing Wnt signaling. Cells 8(8):892. https://doi.org/10.3390/cells8080892

    Article  CAS  PubMed Central  Google Scholar 

  54. Kim S, Lee J, Jeon M, Nam SJ, Lee JE (2015) Elevated TGF-beta1 and -beta2 expression accelerates the epithelial to mesenchymal transition in triple-negative breast cancer cells. Cytokine 75(1):151–158. https://doi.org/10.1016/j.cyto.2015.05.020

    Article  CAS  PubMed  Google Scholar 

  55. Zhang J, Tian XJ, Xing J (2016) Signal transduction pathways of EMT induced by TGF-beta, SHH, and WNT and their crosstalks. J Clin Med 5(4):41. https://doi.org/10.3390/jcm5040041

    Article  CAS  PubMed Central  Google Scholar 

  56. Dzialo E, Tkacz K, Blyszczuk P (2018) Crosstalk between the TGF-beta and WNT signalling pathways during cardiac fibrogenesis. Acta Biochim Pol 65(3):341–349. https://doi.org/10.18388/abp.2018_2635

    Article  CAS  PubMed  Google Scholar 

  57. Taiyab A, Korol A, Deschamps PA, West-Mays JA (2016) β-catenin/CBP-dependent signaling regulates TGF-β-induced epithelial to mesenchymal transition of lens epithelial cells. Invest Ophthalmol Vis Sci 57(13):5736–5747. https://doi.org/10.1167/iovs.16-20162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Falk S, Wurdak H, Ittner LM, Ille F, Sumara G, Schmid MT, Draganova K, Lang KS, Paratore C, Leveen P, Suter U, Karlsson S, Born W, Ricci R, Gotz M, Sommer L (2008) Brain area-specific effect of TGF-beta signaling on Wnt-dependent neural stem cell expansion. Cell Stem Cell 2(5):472–483. https://doi.org/10.1016/j.stem.2008.03.006

    Article  CAS  PubMed  Google Scholar 

  59. Wang H, Rajan S, Liu G, Chakrabarty S (2008) Transforming growth factor beta suppresses beta-catenin/Wnt signaling and stimulates an adhesion response in human colon carcinoma cells in a Smad4/DPC4 independent manner. Cancer Lett 264(2):281–287. https://doi.org/10.1016/j.canlet.2008.01.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Special thanks to Professor Xinjun Fan of Department of Cellular and Anatomy, James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, GA, USA, for his assistance with the experiments and valuable discussion. Thanks to the Chongqing Key Laboratory of Ophthalmology (Chongqing, China) for providing the experiment platform.

Funding

This work was supported by National Natural Science Foundation of China (NO: 81873674).

Author information

Authors and Affiliations

Authors

Contributions

HY conceived the research; XC acquired the data and wrote the manuscript; YC, GL, and YB analyzed the data; XZ supervised the research.

Corresponding author

Correspondence to Xiyuan Zhou.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest/competing interests.

Ethical approval

All animal experiments performed in this study were approved by the Ethics Committee for Animal Experimentation of Chongqing Medical University.

Consent to participate

Not applicable.

Consent for publication

All authors approved to submit this version to this publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Yan, H., Chen, Y. et al. Moderate oxidative stress promotes epithelial–mesenchymal transition in the lens epithelial cells via the TGF-β/Smad and Wnt/β-catenin pathways. Mol Cell Biochem 476, 1631–1642 (2021). https://doi.org/10.1007/s11010-020-04034-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-04034-9

Keywords

Navigation