Skip to main content

Advertisement

Log in

Human Pannexin 1 channel: Insight in structure–function mechanism and its potential physiological roles

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Pannexins, large non-gap junction super family exists in vertebrates, play multiple roles in different cellular functions through their ATP release. Panx1-mediated adenosine 5′-triphosphate (ATP) release plays a vital role in physiological and pathophysiological conditions and is known major extracellular molecule in purinergic signaling. To modulate their function in vivo, a proper regulation of channel is necessary. Post-translational modifications are considered to be some regulating mechanisms for PANX1, while PANX2, PANX3 have been uncharacterized to date. Through their significant evidences, PANXs exclude from gap junction and conduits ATP release and other cellular molecules from cells by various mechanisms. PANX1 is most extensive characterized and implicated in ATP signaling and inflammatory processes. Despite the constant advances, much significance of PANX1 in physiological processes remains elusive. Recently, various research groups along with our group have reported the Cryo-EM structure of Panx1 channel and uncovered the hidden functions in structure–function mechanism as well as to provide the clear understanding in physiological and pathophysiological roles. These research groups reported the novel heptameric structure with contains 4 transmembrane helices (TM), two extracellular loops and one intracellular loop with N and C terminus located at the intracellular side. In addition, the structure contains a large pore of which an inhibitor CBX act as a plug that blocking the passage of substrate. In this context, this review will present current mechanistic understanding in structure and function together with significant physiological roles particularly ATP release in health and disease. As such, this review emphasizes on recent functional properties associated with novel heptameric channel and demystifies channel-mediated ATP release function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1 beta release by the ATP-gated P2X(7) receptor. EMBO J 25:5071–5082. https://doi.org/10.1038/sj.emboj.7601378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Scemes E, Suadicani SO, Dahl G, Spray DC (2007) Connexin and pannexin mediated cell-cell communication. Neuron Glia Biol 3:199–208. https://doi.org/10.1017/s1740925x08000069

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alhouayek M, Sorti R, Gilthorpe JD, Fowler CJ (2019) Role of pannexin-1 in the cellular uptake, release and hydrolysis of anandamide by T84 colon cancer cells. Sci Rep 9:7622. https://doi.org/10.1038/s41598-019-44057-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Velasquez S, Eugenin EA (2014) Role of Pannexin-1 hemichannels and purinergic receptors in the pathogenesis of human diseases. Front Physiol 5:96. https://doi.org/10.3389/fphys.2014.00096

    Article  PubMed  PubMed Central  Google Scholar 

  5. Panchin Y et al (2000) A ubiquitous family of putative gap junction molecules. Curr Biol 10:R473-474

    Article  CAS  PubMed  Google Scholar 

  6. Phelan P (2005a) Innexins: members of an evolutionarily conserved family of gap-junction proteins. Biochim Biophys Acta 1711:225–245. https://doi.org/10.1016/j.bbamem.2004.10.004

    Article  CAS  PubMed  Google Scholar 

  7. Barbe MT, Monyer H, Bruzzone R (2006) Cell-cell communication beyond connexins: the pannexin channels. Physiology 21:103–114. https://doi.org/10.1152/physiol.00048.2005

    Article  CAS  PubMed  Google Scholar 

  8. Panchin YV (2005a) Evolution of gap junction proteins—the pannexin alternative. J Exp Biol 208:1415–1419. https://doi.org/10.1242/jeb.01547

    Article  CAS  PubMed  Google Scholar 

  9. Dubyak GR (2009) Both sides now: multiple interactions of ATP with pannexin-1 hemichannels. Focus on A permeant regulating its permeation pore: inhibition of pannexin 1 channels by ATP. Am J Physiol Cell Physiol 296:C235-241. https://doi.org/10.1152/ajpcell.00639.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. D’Hondt C, Ponsaerts R, De Smedt H, Bultynck G, Himpens B (2009) Pannexins, distant relatives of the connexin family with specific cellular functions? BioEssays 31:953–974. https://doi.org/10.1002/bies.200800236

    Article  CAS  PubMed  Google Scholar 

  11. Ma W et al (2012) Pannexin 1 forms an anion-selective channel. Pflugers Arch 463:585–592. https://doi.org/10.1007/s00424-012-1077-z

    Article  CAS  PubMed  Google Scholar 

  12. Bond SR, Naus CC (2014) The pannexins: past and present. Front Physiol 5:58. https://doi.org/10.3389/fphys.2014.00058

    Article  PubMed  PubMed Central  Google Scholar 

  13. Riquelme MA et al (2013) The ATP required for potentiation of skeletal muscle contraction is released via pannexin hemichannels. Neuropharmacology 75:594–603. https://doi.org/10.1016/j.neuropharm.2013.03.022

    Article  CAS  PubMed  Google Scholar 

  14. Chiu YH, Schappe MS, Desai BN, Bayliss DA (2018) Revisiting multimodal activation and channel properties of Pannexin 1. J Gen Physiol 150(1):19–39. https://doi.org/10.1085/jgp.201711888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Iwamoto T et al (2010) Pannexin 3 regulates intracellular ATP/cAMP levels and promotes chondrocyte differentiation. J Biol Chem 285:18948–18958. https://doi.org/10.1074/jbc.M110.127027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bhaskaracharya A et al (2014) Probenecid blocks human P2X7 receptor-induced dye uptake via a Pannexin-1 independent mechanism. PLoS ONE 9:e93058. https://doi.org/10.1371/journal.pone.0093058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ma W, Hui H, Pelegrin P, Surprenant A (2009) Pharmacological characterization of Pannexin-1 currents expressed in mammalian cells. J Pharmacol Exp Ther 328:409–418. https://doi.org/10.1124/jpet.108.146365

    Article  CAS  PubMed  Google Scholar 

  18. Bao L, Locovei S, Dahl G (2004) Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett 572:65–68. https://doi.org/10.1016/j.febslet.2004.07.009

    Article  CAS  PubMed  Google Scholar 

  19. Li S, Bjelobaba I, Stojilkovic SS (2018) Interactions of Pannexin1 channels with purinergic and NMDA receptor channels. Biochim Biophys Acta Biomembr 1860(1):166–173. https://doi.org/10.1016/j.bbamem.2017.03.025

    Article  CAS  PubMed  Google Scholar 

  20. Chekeni FB et al (2010) Pannexin 1 channels mediate “find-me” signal release and membrane permeability during apoptosis. Nature 467:863-U136. https://doi.org/10.1038/nature09413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Seminario-Vidal L et al (2011) Rho signaling regulates Pannexin 1-mediated ATP release from airway epithelia. J Biol Chem 286:26277–26286. https://doi.org/10.1074/jbc.M111.260562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thompson RJ et al (2008) Activation of Pannexin-1 hemichannels augments aberrant bursting in the hippocampus. Science 322:1555–1559. https://doi.org/10.1126/science.1165209

    Article  CAS  PubMed  Google Scholar 

  23. Lamb IR, Novielli NM, Murrant CL (2018) Pannexin’s role in mediating skeletal muscle active hyperaemia. Faseb J 32:703–705

    Article  Google Scholar 

  24. Saez JC, Cisterna BA, Vargas A, Cardozo CP (2015) Regulation of pannexin and connexin channels and their functional role in skeletal muscles. Cell Mol Life Sci 72:2929–2935. https://doi.org/10.1007/s00018-015-1968-1

    Article  CAS  PubMed  Google Scholar 

  25. Dando R, Roper SD (2009) Cell-to-cell communication in intact taste buds through ATP signalling from pannexin 1 gap junction hemichannels. J Physiol 587:5899–5906. https://doi.org/10.1113/jphysiol.2009.180083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marginedas-Freixa I et al (2018) Human erythrocytes release ATP by a novel pathway involving VDAC oligomerization independent of pannexin-1. Sci Rep 8:1–13. https://doi.org/10.1038/s41598-018-29885-7

    Article  CAS  Google Scholar 

  27. Penuela S, Celetti SJ, Bhalla R, Shao Q, Laird DW (2008) Diverse subcellular distribution profiles of pannexin1 and pannexin3. Cell Commun Adhes 15:133–142. https://doi.org/10.1080/15419060802014115

    Article  CAS  PubMed  Google Scholar 

  28. Penuela S, Bhalla R, Nag K, Laird DW (2009) Glycosylation regulates Pannexin intermixing and cellular localization. Mol Biol Cell 20:4313–4323. https://doi.org/10.1091/mbc.E09-01-0067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pelegrin P, Surprenant A (2009) The P2X(7) receptor-Pannexin connection to dye uptake and IL-1beta release. Purinergic Signal 5(2):129–137. https://doi.org/10.1007/s11302-009-9141-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kanneganti TD, LamkanfiM KYG, Chen G, Park JH, Franchi L, Vandenabeele P, Núñez G (2007) Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity 26:433–443

    Article  CAS  PubMed  Google Scholar 

  31. Phelan P (2005b) Innexins: members of an evolutionarily conserved family of gap-junction proteins. Biochim Biophys Acta 1711(2):225–245

    Article  CAS  PubMed  Google Scholar 

  32. Panchin YV (2005b) Evolution of gap junction proteins–the pannexin alternative. J Exp Biol 208(Pt 8):1415–1419

    Article  CAS  PubMed  Google Scholar 

  33. Ma Z, Siebert AP, Cheung KH et al (2012) Calcium homeostasis modulator 1 (CALHM1) is the pore-forming subunit of an ion channel that mediates extracellular Ca2+ regulation of neuronal excitability. Proc Natl Acad Sci USA 109(28):E1963–E1971. https://doi.org/10.1073/pnas.1204023109

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang J, Dahl G (2010) SCAM analysis of Panx1 suggests a peculiar pore structure. J Gen Physiol 136(5):515–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yeager M, Gilula NB (1992) Membrane topology and quaternary structure of cardiac gap junction ion channels. J Mol Biol 223(4):929–948

    Article  CAS  PubMed  Google Scholar 

  36. Milks LC et al (1988) Topology of the 32-kd liver gap junction protein determined by site-directed antibody localizations. EMBO J 7(10):2967–2975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kawate T, Gouaux E (2006) Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14:673–681

    Article  CAS  PubMed  Google Scholar 

  38. Michalski K, Syrjanen JL, Henze E, Kumpf J, Furukawa H, Kawate T (2020) The Cryo-EM structure of pannexin 1 reveals unique motifs for ion selection and inhibition. Elife 9:e54670. https://doi.org/10.7554/eLife.54670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Qu R, Dong L, Zhang J et al (2020) Cryo-EM structure of human heptameric Pannexin 1 channel. Cell Res. https://doi.org/10.1038/s41422-020-0298-5

    Article  PubMed  PubMed Central  Google Scholar 

  40. Deng Z, He Z, Maksaev G, Bitter RM, Rau M, Fitzpatrick JAJ, Yuan P (2020) Cryo-EM structures of the ATP release channel pannexin 1. Nat Struct Mol Biol 27(4):373–381. https://doi.org/10.1038/s41594-020-0401-0

    Article  CAS  PubMed  Google Scholar 

  41. Jin Q, Zhang B, Zheng X et al (2020) Cryo-EM structures of human pannexin 1 channel. Cell Res. https://doi.org/10.1038/s41422-020-0310-0

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mou L, Ke M, Song M et al (2020) Structural basis for gating mechanism of Pannexin 1 channel. Cell Res 30(5):452–454. https://doi.org/10.1038/s41422-020-0313-x

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dahl G (2015) ATP release through pannexon channels. Philos Trans R Soc Lond B 370(1672):20140191. https://doi.org/10.1098/rstb.2014.0191

    Article  CAS  Google Scholar 

  44. Billaud M, Lohman AW, Johnstone SR, Biwer LA, Mutchler S, Isakson BE (2014) Regulation of cellular communication by signaling microdomains in the blood vessel wall. Pharmacol Rev 66(2):513–569. https://doi.org/10.1124/pr.112.007351

    Article  PubMed  PubMed Central  Google Scholar 

  45. Adamson SE, Leitinger N (2014) The role of pannexin1 in the induction and resolution of inflammation. FEBS Lett 588(8):1416–1422. https://doi.org/10.1016/j.febslet.2014.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Boyce AKJ, Epp AL, Nagarajan A (1860) LA Swayne (2018) Transcriptional and post-translational regulation of pannexins. Biochimica et Biophysica Acta (BBA) 1:72–82

    Google Scholar 

  47. Sandilos JK, Bayliss DA (2012) Physiological mechanisms for the modulation of Pannexin 1 channel activity. J Physiol 590(24):6257–6266. https://doi.org/10.1113/jphysiol.2012.240911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Adamson SE, Meher AK, Chiu YH, Sandilos JK, Oberholtzer NP, Walker NN, Hargett SR, Seaman SA, Peirce-Cottler SM, Isakson BE, McNamara CA, Keller SR, Harris TE, Bayliss DA, Leitinger N (2015) Pannexin 1 is required for full activation of insulin-stimulated glucose uptake in adipocytes. Mol Metab 4(9):610–618. https://doi.org/10.1016/j.molmet.2015.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ardiles AO, Flores-Muñoz C, Toro-Ayala G, Cárdenas AM, Palacios AG, Muñoz P, Fuenzalida M, Sáez JC, Martínez AD (2014) Pannexin 1 regulates bidirectional hippocampal synaptic plasticity in adult mice. Front Cell Neurosci 8:326. https://doi.org/10.3389/fncel.2014.00326

    Article  PubMed  PubMed Central  Google Scholar 

  50. Prochnow N, Abdulazim A, Kurtenbach S, Wildförster V, Dvoriantchikova G, Hanske J et al (2012) Pannexin1 stabilizes synaptic plasticity and is needed for learning. PLoS ONE 7:e51767. https://doi.org/10.1371/journal.pone.0051767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Whyte-Fagundes P, Zoidl G (2018) Mechanisms of pannexin1 channel gating and regulation. Biochimica et Biophysica Acta (BBA) 1860(1):65–71

    Article  CAS  Google Scholar 

  52. Ardiles AO, Flores-Muñoz C, Toro-Ayala G et al (2014) Pannexin 1 regulates bidirectional hippocampal synaptic plasticity in adult mice. Front Cell Neurosci 8:326. https://doi.org/10.3389/fncel.2014.00326

    Article  PubMed  PubMed Central  Google Scholar 

  53. Basova LV, Tang X, Umasume T et al (2017) Manipulation of Panx1 activity increases the engraftment of transplanted lacrimal gland epithelial progenitor cells. Invest Ophthalmol Vis Sci 58(13):5654–5665. https://doi.org/10.1167/iovs.17-22071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Scemes E, Velíšek L, Velíšková J (2019) Astrocyte and neuronal pannexin1 contribute distinctly to seizures. ASN Neuro 11:1759091419833502. https://doi.org/10.1177/1759091419833502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zoidl G, Petrasch-Parwez E, Ray A, Meier C, Bunse S, Habbes HW, Dahl G, Dermietzel R (2007) Localization of the pannexin1 protein at postsynaptic sites in the cerebral cortex and hippocampus. Neuroscience 146(1):9–16. https://doi.org/10.1016/j.neuroscience.2007.01.061

    Article  CAS  PubMed  Google Scholar 

  56. Beckel JM, Argall AJ, Lim JC, Xia J, Lu W, Coffey EE, Macarak EJ, Shahidullah M, Delamere NA, Zode GS, Sheffield VC, Shestopalov VI, Laties AM, Mitchell CH (2014) Mechanosensitive release of adenosine 5’-triphosphate through pannexin channels and mechanosensitive upregulation of pannexin channels in optic nerve head astrocytes: a mechanism for purinergic involvement in chronic strain. Glia 62(9):1486–1501. https://doi.org/10.1002/glia.22695

    Article  PubMed  PubMed Central  Google Scholar 

  57. Billaud M, Sandilos JK, Isakson BE (2012) Pannexin 1 in the regulation of vascular tone. Trends Cardiovasc Med 22(3):68–72. https://doi.org/10.1016/j.tcm.2012.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kauffenstein G, Furstenau CR, D’Orleans-Juste P, Sevigny J (2010) The ecto-nucleotidase NTPDase1 differentially regulates P2Y1 and P2Y2 receptor-dependent vasorelaxation. Br J Pharmacol 159:576–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shestopalov VI, Slepak VZ (2014) Molecular pathways of pannexin1-mediated neurotoxicity. Front Physiol. https://doi.org/10.3389/fphys.2014.00023

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rink C, Khanna S (2011) Significance of brain tissue oxygenation and the arachidonic acid cascade in stroke. Antioxid Redox Signal 14(10):1889–1903. https://doi.org/10.1089/ars.2010.3474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kim Y, Davidson JO, Green CR, Nicholson LFB, O’Carroll SJ, Zhang J (2018) Connexins and Pannexins in cerebral ischemia. Biochim Biophys Acta Biomembr 1860(1):224–236. https://doi.org/10.1016/j.bbamem.2017.03.018

    Article  CAS  PubMed  Google Scholar 

  62. MacNee W (2005) Pathogenesis of chronic obstructive pulmonary disease. Proc Am Thorac Soc 2(4):258–291. https://doi.org/10.1513/pats.200504-045SR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gombault A, Baron L, Couillin I (2013) ATP release and purinergic signaling in NLRP3 inflammasome activation. Front Immunol 3:414. https://doi.org/10.3389/fimmu.2012.00414

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rafieian-Kopaei M, Setorki M, Doudi M, Baradaran A, Nasri H (2014) Atherosclerosis: process, indicators, risk factors and new hopes. Int J Prev Med 5(8):927–946

    PubMed  PubMed Central  Google Scholar 

  65. Lusis AJ (2000) Atherosclerosis. Nature 407(6801):233–241. https://doi.org/10.1038/35025203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Makarenkova HP, Shah SB, Shestopalov VI (2018) The two faces of pannexins: new roles in inflammation and repair. J Inflamm Res 11:273–288. https://doi.org/10.2147/JIR.S128401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA (1998) Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393(6686):648–659. https://doi.org/10.1038/31405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wilen CB, Tilton JC, Doms RW (2012) HIV: cell binding and entry. Cold Spring Harb Perspect Med. 2(8):a006866. https://doi.org/10.1101/cshperspect.a006866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Woodham AW, Skeate JG, Sanna AM et al (2016) Human immunodeficiency virus immune cell receptors, coreceptors, and cofactors: implications for prevention and treatment. AIDS Patient Care STDS 30(7):291–306. https://doi.org/10.1089/apc.2016.0100

    Article  PubMed  PubMed Central  Google Scholar 

  70. Grove J, Marsh M (2011) The cell biology of receptor-mediated virus entry. J Cell Biol 195(7):1071–1082. https://doi.org/10.1083/jcb.201108131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Orellana JA, Velasquez S, Williams DW, Sáez JC, Berman JW, Eugenin EA (2013) Pannexin1 hemichannels are critical for HIV infection of human primary CD4+ T lymphocytes. J Leukoc Biol 94(3):399–407. https://doi.org/10.1189/jlb.0512249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Garre JM, Retamal MA, Cassina P, Barbeito L, Bukauskas FF, Saez JC et al (2010) FGF1 induces ATP release from spinal astrocytes in culture and pannexin and connex in hemi channels. Proc Natl Acad Sci USA 107:22659–22664. https://doi.org/10.1073/pnas.1013793107

    Article  PubMed  PubMed Central  Google Scholar 

  73. Iglesias RM, Spray DC (2012) Pannexin1 mediated ATP release provides signal transmission between Neuro2A cells. Neurochem Res 37:1355–1363. https://doi.org/10.1007/s11064-012-0720-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Boyce AK, Kim MS, Wicki-Stordeur LE, Swayne LA (2015) ATP stimulates pannexin 1 internalization to endosomal compartments. Biochem J 470(3):319–330. https://doi.org/10.1042/BJ20141551

    Article  CAS  PubMed  Google Scholar 

  75. Ardiles AO, Flores-Munoz C, Toro-Ayala G, Cardenas AM, Palacios AG, Munoz P, Fuenzalida M, Saez JC, Martinez AD (2014) Pannexin 1 regulates bidirectional hippocampal synaptic plasticity in adult mice. Front Cell Neurosci 8:326

    Article  PubMed  PubMed Central  Google Scholar 

  76. Boucher J, Simonneau C, Denet G, Clarhaut J, Balandre A-C, Mesnil M, Cronier L, Monvoisin A (2018) Pannexin-1 in human lymphatic endothelial cells regulates lymphangiogenesis. Int J Mol Sci 19:1558

    Article  PubMed Central  Google Scholar 

  77. Celetti SJ, Cowan KN, Penuela S, Shao Q, Churko J, Laird DW (2010) Implications of pannexin 1 and pannexin 3 for keratinocyte differentiation. J Cell Sci 123:1363–1372. https://doi.org/10.1242/jcs.056093

    Article  CAS  PubMed  Google Scholar 

  78. Dvoriantchikova G, Ivanov D, Panchin Y, Shestopalov VI (2006) Expression of pannexin family of proteins in the retina. FEBS Lett 580:2178–2182

    Article  CAS  PubMed  Google Scholar 

  79. Ransford GA, Fregien N, Qiu F, Dahl G, Conner GE, Salathe M (2009) Pannexin 1 contributes to ATP release in airway epithelia. Am J Respir Cell Mol Biol 41(5):525–534. https://doi.org/10.1165/rcmb.2008-0367OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Workman AD, Carey RM, Chen B et al (2017) CALHM1-mediated ATP release and ciliary beat frequency modulation in nasal epithelial cells. Sci Rep 7:6687. https://doi.org/10.1038/s41598-017-07221-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516. https://doi.org/10.1080/01926230701320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cohen JJ (1991) Programmed cell death in the immune system. Adv Immunol 50:55–85

    Article  CAS  PubMed  Google Scholar 

  83. Arur S, Uche UE, Rezaul K, Fong M, Scranton V, Cowan AE, Mohler W, Han DK (2003) Annexin I is an endogenous ligand that mediates apoptotic cell engulfment. Dev Cell 4:587–598

    Article  CAS  PubMed  Google Scholar 

  84. Parrish AB, Freel CD, Kornbluth S (2013) Cellular mechanisms controlling caspase activation and function. Cold Spring Harb Perspect Biol 5(6):a008672. https://doi.org/10.1101/cshperspect.a008672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC (2018) Neuronal cell death. Physiol Rev 98(2):813–880. https://doi.org/10.1152/physrev.00011.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jan R, Chaudhry GE (2019) Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Adv Pharm Bull 9(2):205–218. https://doi.org/10.15171/apb.2019.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Reed JC (2000) Mechanisms of apoptosis. Am J Pathol 157(5):1415–1430. https://doi.org/10.1016/S0002-9440(10)64779-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shoji KF, Sáez PJ, Harcha PA, Aguila HL, Sáez JC (2014) Pannexin1 channels act downstream of P2X 7 receptors in ATP-induced murine T-cell death. Channels. 8(2):142–156. https://doi.org/10.4161/chan.28122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Locovei S, Scemes E, Qiu F, Spray DC, Dahl G (2007) Pannexin1 is part of the pore forming unit of the P2X(7) receptor death complex. FEBS Lett 581(3):483–488. https://doi.org/10.1016/j.febslet.2006.12.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Boyce AKJ, Swayne LA (2017) P2X7 receptor cross-talk regulates ATP-induced pannexin 1 internalization. Biochem J 474(13):2133–2144. https://doi.org/10.1042/BCJ20170257

    Article  CAS  PubMed  Google Scholar 

  91. Swayne LA, Boyce AKJ (2017) Regulation of Pannexin 1 surface expression by extracellular ATP: potential implications for nervous system function in health and disease. Front Cell Neurosci 11:230. https://doi.org/10.3389/fncel.2017.00230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Crespo Yanguas S, Willebrords J, Johnstone SR et al (2017) Pannexin1 as mediator of inflammation and cell death. Biochim Biophys Acta Mol Cell Res 1864(1):51–61. https://doi.org/10.1016/j.bbamcr.2016.10.006

    Article  CAS  PubMed  Google Scholar 

  93. Wicki-Stordeur LE, Swayne LA (2013) Panx1 regulates neural stem and progenitor cell behaviours associated with cytoskeletal dynamics and interacts with multiple cytoskeletal elements. Cell Commun Signal 11:62. https://doi.org/10.1186/1478-811X-11-62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Malik A, Kanneganti TD (2018) Function and regulation of IL-1α in inflammatory diseases and cancer. Immunol Rev 281(1):124–137. https://doi.org/10.1111/imr.12615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mogensen TH (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22(2):240–273. https://doi.org/10.1128/CMR.00046-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Satoh T, Akira S (2016) Toll-like receptor signaling and its inducible proteins. Microbiol Spectr. 4(6):447. https://doi.org/10.1128/microbiolspec.MCHD-0040-2016

    Article  Google Scholar 

  97. Liu T, Zhang L, Joo D, Sun SC (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2:17023. https://doi.org/10.1038/sigtrans.2017.23

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hayden MS, Ghosh S (2014) Regulation of NF-κB by TNF family cytokines. Semin Immunol 26(3):253–266. https://doi.org/10.1016/j.smim.2014.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13(6):397–411. https://doi.org/10.1038/nri3452

    Article  CAS  PubMed  Google Scholar 

  100. Davis BK, Wen H, Ting JP (2011) The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 29:707–735. https://doi.org/10.1146/annurev-immunol-031210-101405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zheng D, Liwinski T, Elinav E (2020) Inflammasome activation and regulation: toward a better understanding of complex mechanisms. Cell Discov 6:36. https://doi.org/10.1038/s41421-020-0167-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Giuliani AL, Sarti AC, Falzoni S, Di Virgilio F (2017) The P2X7 receptor-interleukin-1 liaison. Front Pharmacol 8:123. https://doi.org/10.3389/fphar.2017.00123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Di Virgilio F, Dal Ben D, Sarti AC, Giuliani AL, Falzoni S (2017) The P2X7 Receptor in infection and inflammation. Immunity 47(1):15–31. https://doi.org/10.1016/j.immuni.2017.06.020

    Article  CAS  PubMed  Google Scholar 

  104. Valdebenito S, Barreto A, Eugenin EA (2018) The role of connexin and pannexin containing channels in the innate and acquired immune response. Biochim Biophys Acta Biomembr 1860(1):154–165. https://doi.org/10.1016/j.bbamem.2017.05.015

    Article  CAS  PubMed  Google Scholar 

  105. Yang D, He Y, Muñoz-Planillo R, Liu Q, Núñez G (2015) Caspase-11 requires the Pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock. Immunity 43(5):923–932. https://doi.org/10.1016/j.immuni.2015.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bunderson-Schelvan M, Holian A, Hamilton RF Jr (2017) Engineered nanomaterial-induced lysosomal membrane permeabilization and anti-cathepsin agents. J Toxicol Environ Health B 20(4):230–248. https://doi.org/10.1080/10937404.2017.1305924

    Article  CAS  Google Scholar 

  107. Kelley N, Jeltema D, Duan Y, He Y (2019) The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci 20(13):3328. https://doi.org/10.3390/ijms20133328

    Article  CAS  PubMed Central  Google Scholar 

  108. Karatas H, Erdener SE, Gursoy-Ozdemir Y, Lule S, Eren-Koçak E, Sen ZD, Dalkara T (2013) Spreading depression triggers headache by activating neuronal Panx1 channels. Science 339(6123):1092–1095. https://doi.org/10.1126/science.1231897 (Erratum.In:Science.2015Oct2;350(6256):aad5166.Erratumin:Science.2015Nov20;350(6263):921)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

EAB wrote the main manuscript and made figures; NS edited the manuscript and revised the final manuscript.

Corresponding author

Correspondence to Eijaz Ahmed Bhat.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, E.A., Sajjad, N. Human Pannexin 1 channel: Insight in structure–function mechanism and its potential physiological roles. Mol Cell Biochem 476, 1529–1540 (2021). https://doi.org/10.1007/s11010-020-04002-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-04002-3

Keywords

Navigation