Skip to main content
Log in

Taking a re-look at cap-binding signatures of the mRNA cap-binding protein eIF4E orthologues in trypanosomatids

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Protein translation leading to polypeptide synthesis involves three distinct events, namely, initiation, elongation, and termination. Translation initiation is a multi-step process that is carried out by ribosomes on the mRNA with the assistance of a large number of proteins called translation initiation factors. Trypanosomatids are kinetoplastidas (flagellated protozoans), some of which cause acute disease syndromes in humans. Vector-borne transmission of protozoan parasites like Leishmania and Trypanosoma causes diseases that affect a large section of the world population and lead to significant morbidity and mortality. The mechanisms of translation initiation in higher eukaryotes are relatively well understood. However, structural and functional conservation of initiation factors in trypanosomatids are only beginning to be understood. Studies carried out so far suggests that at least in Leishmania and Trypanosoma eIF4E function may not be restricted to canonical translation initiation and some of the homologues may have alternate/non-canonical functions. Nonetheless, all of them bind the cap analogs, albeit with different efficiencies, indicating that this property may play an important role in the functionality of eIF4Es. Here, I give a brief background of trypanosomatid eIF4Es and revisit the cap-binding signatures of eIF4E orthologues in trypanosomatids, whose genome sequences are available, in detail, in comparison to human eIF4E1 and Trypanosoma cruzi eIF4E5, with an expanded list of members of this group in light of newer findings. The group 1 and 2 eIF4Es may use either a variation of heIF4E1 or T. cruzi eIF4E5 cap-4-binding signatures, while eIF4E5 and eIF4E6 use distinct amino acid contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stuart K, Brun R, Croft S, Fairlamb A, Gurtler RE et al (2008) Kinetoplastids: related protozoan pathogens, different diseases. J Clin Invest 118:1301–1310

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Votypka J, Sukova E, Kraeva N, Ishemgulova A, Duzi I et al (2013) Diversity of trypanosomatids (Kinetoplastea: Trypanosomatidae) parasitizing fleas (Insecta: Siphonaptera) and description of a new genus Blechomonas gen. n. Protist 164:763–781

    CAS  PubMed  Google Scholar 

  3. Blom D, de Haan A, van den Berg M, Sloof P, Jirku M et al (1998) RNA editing in the free-living bodonid Bodo saltans. Nucleic Acids Res 26:1205–1213

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Jaskowska E, Butler C, Preston G, Kelly S (2015) Phytomonas: trypanosomatids adapted to plant environments. PLoS Pathog 11:e1004484

    PubMed  PubMed Central  Google Scholar 

  5. Zofou D, Nyasa RB, Nsagha DS, Ntie-Kang F, Meriki HD et al (2014) Control of malaria and other vector-borne protozoan diseases in the tropics: enduring challenges despite considerable progress and achievements. Infect Dis Poverty 3:1

    PubMed  PubMed Central  Google Scholar 

  6. Giordani F, Morrison LJ, Rowan TG, de Koning HP, Barrett MP (2016) The animal trypanosomiases and their chemotherapy: a review. Parasitology 143:1862–1889

    PubMed  PubMed Central  Google Scholar 

  7. Cullen DR, Mocerino M (2017) A brief review of drug discovery research for human African trypanosomiasis. Curr Med Chem 24:701–717

    CAS  PubMed  Google Scholar 

  8. Vijayakumar S, Das P (2018) Recent progress in drug targets and inhibitors towards combating leishmaniasis. Acta Trop 181:95–104

    CAS  PubMed  Google Scholar 

  9. Fairlamb AH, Horn D (2018) Melarsoprol resistance in African trypanosomiasis. Trends Parasitol 34:481–492

    CAS  PubMed  Google Scholar 

  10. Cowell AN, Winzeler EA (2019) The genomic architecture of antimalarial drug resistance. Brief Funct Genomics 18(5):314–328

    PubMed  PubMed Central  Google Scholar 

  11. Cupolillo E, Pereira LO, Fernandes O, Catanho MP, Pereira JC et al (1998) Genetic data showing evolutionary links between Leishmania and Endotrypanum. Mem Inst Oswaldo Cruz 93:677–683

    CAS  PubMed  Google Scholar 

  12. Flegontov P, Butenko A, Firsov S, Kraeva N, Elias M et al (2016) Genome of Leptomonas pyrrhocoris: a high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci Rep 6:23704

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Alcolea PJ, Alonso A, Garcia-Tabares F, Torano A, Larraga V (2014) An Insight into the proteome of Crithidia fasciculata choanomastigotes as a comparative approach to axenic growth, peanut lectin agglutination and differentiation of Leishmania spp. promastigotes. PLoS One 9:e113837

    PubMed  PubMed Central  Google Scholar 

  14. Grybchuk D, Kostygov AY, Macedo DH, Votypka J, Lukes J et al (2018) RNA viruses in blechomonas (trypanosomatidae) and evolution of leishmaniavirus. mBio 9:e01932

    PubMed  PubMed Central  Google Scholar 

  15. Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136:731–745

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Osborne MJ, Borden KL (2015) The eukaryotic translation initiation factor eIF4E in the nucleus: taking the road less traveled. Immunol Rev 263:210–223

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lazaris-Karatzas A, Montine KS, Sonenberg N (1990) Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5' cap. Nature 345:544–547

    CAS  PubMed  Google Scholar 

  18. De Benedetti A, Graff JR (2004) eIF-4E expression and its role in malignancies and metastases. Oncogene 23:3189–3199

    PubMed  Google Scholar 

  19. Niedzwiecka A, Marcotrigiano J, Stepinski J, Jankowska-Anyszka M, Wyslouch-Cieszynska A et al (2002) Biophysical studies of eIF4E cap-binding protein: recognition of mRNA 5' cap structure and synthetic fragments of eIF4G and 4E-BP1 proteins. J Mol Biol 319:615–635

    CAS  PubMed  Google Scholar 

  20. Zuberek J, Kubacka D, Jablonowska A, Jemielity J, Stepinski J et al (2007) Weak binding affinity of human 4EHP for mRNA cap analogs. RNA 13:691–697

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ho JJD, Lee S (2016) A cap for every occasion: alternative eIF4F complexes. Trends Biochem Sci 41:821–823

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yoffe Y, Zuberek J, Lerer A, Lewdorowicz M, Stepinski J et al (2006) Binding specificities and potential roles of isoforms of eukaryotic initiation factor 4E in Leishmania. Eukaryot Cell 5:1969–1979

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lewdorowicz M, Yoffe Y, Zuberek J, Jemielity J, Stepinski J et al (2004) Chemical synthesis and binding activity of the trypanosomatid cap-4 structure. RNA 10:1469–1478

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Reolon LW, Vichier-Guerre S, de Matos BM, Dugue L, Assuncao T et al (2019) Crystal structure of the Trypanosoma cruzi EIF4E5 translation factor homologue in complex with mRNA cap-4. Nucleic Acids Res 47:5973–5987

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Joshi B, Lee K, Maeder DL, Jagus R (2005) Phylogenetic analysis of eIF4E-family members. BMC Evol Biol 5:48

    PubMed  PubMed Central  Google Scholar 

  26. Dhalia R, Reis CR, Freire ER, Rocha PO, Katz R et al (2005) Translation initiation in Leishmania major: characterisation of multiple eIF4F subunit homologues. Mol Biochem Parasitol 140:23–41

    CAS  PubMed  Google Scholar 

  27. Freire ER, Dhalia R, Moura DM, da Costa Lima TD, Lima RP et al (2011) The four trypanosomatid eIF4E homologues fall into two separate groups, with distinct features in primary sequence and biological properties. Mol Biochem Parasitol 176:25–36

    CAS  PubMed  Google Scholar 

  28. Tuteja R (2009) Identification and bioinformatics characterization of translation initiation complex eIF4F components and poly(A)-binding protein from Plasmodium falciparum. Commun Integr Biol 2:245–260

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yoffe Y, Zuberek J, Lewdorowicz M, Zeira Z, Keasar C et al (2004) Cap-binding activity of an eIF4E homolog from Leishmania. RNA 10:1764–1775

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Freire ER, Sturm NR, Campbell DA, de Melo Neto OP (2017) The role of cytoplasmic mRNA cap-binding protein complexes in Trypanosoma brucei and other Trypanosomatids. Pathogens 6

  31. Freire ER, Vashisht AA, Malvezzi AM, Zuberek J, Langousis G et al (2014) eIF4F-like complexes formed by cap-binding homolog TbEIF4E5 with TbEIF4G1 or TbEIF4G2 are implicated in post-transcriptional regulation in Trypanosoma brucei. RNA 20:1272–1286

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Freire ER, Malvezzi AM, Vashisht AA, Zuberek J, Saada EA et al (2014) Trypanosoma brucei translation initiation factor homolog EIF4E6 forms a tripartite cytosolic complex with EIF4G5 and a capping enzyme homolog. Eukaryot Cell 13:896–908

    PubMed  PubMed Central  Google Scholar 

  33. Zinoviev A, Leger M, Wagner G, Shapira M (2011) A novel 4E-interacting protein in Leishmania is involved in stage-specific translation pathways. Nucleic Acids Res 39:8404–8415

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yoffe Y, Leger M, Zinoviev A, Zuberek J, Darzynkiewicz E et al (2009) Evolutionary changes in the Leishmania eIF4F complex involve variations in the eIF4E-eIF4G interactions. Nucleic Acids Res 37:3243–3253

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zinoviev A, Manor S, Shapira M (2012) Nutritional stress affects an atypical cap-binding protein in Leishmania. RNA Biol 9:1450–1460

    CAS  PubMed  Google Scholar 

  36. Alsford S, Turner DJ, Obado SO, Sanchez-Flores A, Glover L et al (2011) High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome. Genome Res 21:915–924

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Meleppattu S, Arthanari H, Zinoviev A, Boeszoermenyi A, Wagner G et al (2018) Structural basis for LeishIF4E-1 modulation by an interacting protein in the human parasite Leishmania major. Nucleic Acids Res 46:3791–3801

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Altmann M, Edery I, Trachsel H, Sonenberg N (1988) Site-directed mutagenesis of the tryptophan residues in yeast eukaryotic initiation factor 4E. Effects on cap binding activity. J Biol Chem 263:17229–17232

    CAS  PubMed  Google Scholar 

  39. McCubbin WD, Edery I, Altmann M, Sonenberg N, Kay CM (1988) Circular dichroism and fluorescence studies on protein synthesis initiation factor eIF-4E and two mutant forms from the yeast Saccharomyces cerevisiae. J Biol Chem 263:17663–17671

    CAS  PubMed  Google Scholar 

  40. Morino S, Hazama H, Ozaki M, Teraoka Y, Shibata S et al (1996) Analysis of the mRNA cap-binding ability of human eukaryotic initiation factor-4E by use of recombinant wild-type and mutant forms. Eur J Biochem 239:597–601

    CAS  PubMed  Google Scholar 

  41. Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK (1997) Cocrystal structure of the messenger RNA 5′ cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell 89:951–961

    CAS  PubMed  Google Scholar 

  42. Rhoads RE (2009) eIF4E: new family members, new binding partners, new roles. J Biol Chem 284:16711–16715

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Volpon L, Osborne MJ, Topisirovic I, Siddiqui N, Borden KL (2006) Cap-free structure of eIF4E suggests a basis for conformational regulation by its ligands. EMBO J 25:5138–5149

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ruszczynska K, Kamienska-Trela K, Wojcik J, Stepinski J, Darzynkiewicz E et al (2003) Charge distribution in 7-methylguanine regarding cation-pi interaction with protein factor eIF4E. Biophys J 85:1450–1456

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Tomoo K, Shen X, Okabe K, Nozoe Y, Fukuhara S et al (2002) Crystal structures of 7-methylguanosine 5′-triphosphate (m(7)GTP)- and P(1)-7-methylguanosine-P(3)-adenosine-5′,5′-triphosphate (m(7)GpppA)-bound human full-length eukaryotic initiation factor 4E: biological importance of the C-terminal flexible region. Biochem J 362:539–544

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lama D, Pradhan MR, Brown CJ, Eapen RS, Joseph TL et al (2017) Water-bridge mediates recognition of mRNA cap in eIF4E. Structure 25:188–194

    CAS  PubMed  Google Scholar 

  47. Freire ER, Moura DMN, Bezerra MJR, Xavier CC, Morais-Sobral MC et al (2018) Trypanosoma brucei EIF4E2 cap-binding protein binds a homolog of the histone-mRNA stem-loop-binding protein. Curr Genet 64:821–839

    CAS  PubMed  Google Scholar 

  48. Dhalia R, Marinsek N, Reis CR, Katz R, Muniz JR et al (2006) The two eIF4A helicases in Trypanosoma brucei are functionally distinct. Nucleic Acids Res 34:2495–2507

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R (2017) Leishmaniasis: a review. F1000Res 6: 750

  50. Cucunuba ZM, Okuwoga O, Basanez MG, Nouvellet P (2016) Increased mortality attributed to Chagas disease: a systematic review and meta-analysis. Parasit Vectors 9:42

    PubMed  PubMed Central  Google Scholar 

  51. Bhattacharya A, Corbeil A, do Monte-Neto RL, Fernandez-Prada C (2020) Of drugs and trypanosomatids: new tools and knowledge to reduce bottlenecks in drug discovery. Genes (Basel) 11

  52. Shaw PJ, Ponmee N, Karoonuthaisiri N, Kamchonwongpaisan S, Yuthavong Y (2007) Characterization of human malaria parasite Plasmodium falciparum eIF4E homologue and mRNA 5′ cap status. Mol Biochem Parasitol 155:146–155

    CAS  PubMed  Google Scholar 

Download references

Funding

SD is currently supported by THSTI, India core funding.

Author information

Authors and Affiliations

Authors

Contributions

S. Das conceptualized and wrote the manuscript.

Corresponding author

Correspondence to Supratik Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S. Taking a re-look at cap-binding signatures of the mRNA cap-binding protein eIF4E orthologues in trypanosomatids. Mol Cell Biochem 476, 1037–1049 (2021). https://doi.org/10.1007/s11010-020-03970-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03970-w

Keywords

Navigation