Skip to main content

Advertisement

Log in

Activation of STING inhibits cervical cancer tumor growth through enhancing the anti-tumor immune response

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cervical cancer remains the second leading cause of gynecologic cancer-related mortality among women worldwide. STING (stimulator of interferon genes) was reported to be involved in the immune surveillance of tumors. However, the specific role of STING in cervical cancer remains unclear. In this study, we found that the cGAS (Cyclic GMP-AMP synthase)/STING signal decreased in cervical cancer cells. Knockdown of STING by siRNA enhanced the cell viability and migration of cervical cancer cells, while activation of STING by ADU-S100 inhibited the cell viability of cervical cancer cells, with no effect on the migration and apoptosis. In addition, ADU-S100 promoted the secretion of IFNβ and IL-6, and the activation of TBK1 (TANK-binding kinase 1)/NF-κB (nuclear factor kappa-B) pathway. Meanwhile, knockdown of STING inhibited the production of IFNβ and IL-6 that were triggered by dsDNA and suppressed the TBK1/NF-κB signaling. ADU-S100 also suppressed tumor growth in vivo and increased the tumor-infiltrating CD8+ T cell and CD103+ dendritic cell numbers. The NF-κB signal inhibitor limited the increasing numbers of CD8+ T cell and CD103+ dendritic cells induced by ADU-S100, without influence on tumor growth. Hence, our study suggested that STING could serve as a potential novel immunotherapeutic target for cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386

    Article  CAS  PubMed  Google Scholar 

  2. Schiffman M, Wentzensen N, Wacholder S, Kinney W, Gage JC, Castle PE (2016) Human papillomavirus testing in the prevention of cervical cancer. J Natl Cancer Inst 103:368–383

    Google Scholar 

  3. Network CGAR (2017) Integrated genomic and molecular characterization of cervical cancer. Nature 543:378–384

    Google Scholar 

  4. Kidd EA, Siegel BA, Dehdashti F, Rader JS, Mutch DG, Powell MA, Grigsby PW (2010) Lymph node staging by positron emission tomography in cervical cancer: relationship to prognosis. J Clin Oncol 28:2108–2113

    PubMed  Google Scholar 

  5. Abe T, Harashima A, Xia T, Konno H, Konno K, Morales A, Ahn J, Gutman D, Barber GN (2013) STING recognition of cytoplasmic DNA instigates cellular defense. Mol Cell 50:5–15

    CAS  PubMed  Google Scholar 

  6. Chen Q, Sun L, Chen ZJ (2016) Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nat Immunol 17:1142–1149

    CAS  PubMed  Google Scholar 

  7. Yum S, Li M, Frankel AE, Chen ZJ (2019) Roles of the cGAS-STING pathway in cancer immunosurveillance and immunotherapy. Ann Rev Cancer Biol 3:323–344

    Google Scholar 

  8. Cai X, Chiu Y-H, Chen ZJ (2014) The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol Cell 54:289–296

    CAS  PubMed  Google Scholar 

  9. Bofill-De Ros X, Santos M, Vila-Casadesús M, Villanueva E, Andreu N, Dierssen M, Fillat C (2015) Genome-wide miR-155 and miR-802 target gene identification in the hippocampus of Ts65Dn down syndrome mouse model by miRNA sponges. BMC Genomics 16:907

    PubMed  PubMed Central  Google Scholar 

  10. De Queiroz NMGP, Xia T, Konno H, Barber GN (2019) Ovarian cancer cells commonly exhibit defective STING signaling which affects sensitivity to viral oncolysis. Mol Cancer Res 17:974–986

    PubMed  Google Scholar 

  11. Song S, Peng P, Tang Z, Zhao J, Wu W, Li H, Shao M, Li L, Yang C, Duan F, Zhang M, Zhang J, Wu H, Li C, Wang X, Wang H, Ruan Y, Gu J (2017) Decreased expression of STING predicts poor prognosis in patients with gastric cancer. Sci Rep 7:39858

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Francica BJ, Ghasemzadeh A, Desbien AL, Theodros D, Sivick KE, Reiner GL, Glickman LH, Marciscano AE, Sharabi AB, Leong ML (2018) TNFα and radioresistant stromal cells are essential for therapeutic efficacy of cyclic dinucleotide STING agonists in nonimmunogenic tumors. Cancer Immunol Res 6:422–433

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu D, Wu H, Wang C, Li Y, Tian H, Siraj S, Sehgal SA, Wang X, Wang J, Shang Y, Jiang Z, Liu L, Chen Q (2019) STING directly activates autophagy to tune the innate immune response. Cell Death Differ 26:1735–1749. https://doi.org/10.1038/s41418-018-0251-z

    Article  CAS  PubMed  Google Scholar 

  14. Tang C-HA, Zundell JA, Ranatunga S, Lin C, Nefedova Y, Del Valle JR, Hu C-CA (2016) Agonist-mediated activation of STING induces apoptosis in malignant B cells. Cancer Res 76:2137–2152

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zaidi A, Omstead A, Chowdhury N, Kosovec J, Zheng P, Salvitti M, Gorbunova A, Babar L, Kelly R, Jobe B (2019) 812P STING agonist, ADU-S100, yields potent anti-tumour activity and therapeutically favorable immune profile in an esophageal adenocarcinoma model. Ann Oncol 30:mdz247. 138

    Google Scholar 

  16. Hendriks M, Kreijtz J, Vogelzang LD, Deng W, Glickman LH, Leong M, McWhirter S, Jr TWD, van Eenennaam H, van Elsas A (2017) Characterization of a novel differentiated anti-CTLA-4 antibody (ADU-1604) in vitro and in vivo. J Immunother Cancer

  17. Liang D, Xiao-Feng H, Guan-Jun D, Er-Ling H, Sheng C, Ting-Ting W, Qin-Gang H, Yan-Hong N, Ya-Yi H (2015) Activated STING enhances Tregs infiltration in the HPV-related carcinogenesis of tongue squamous cells via the c-jun/CCL22 signal. Biochim Biophys Acta (BBA) – Mol Basis Dis 1852:2494–2503

    Google Scholar 

  18. Xiao D, Huang W, Ou M, Guo C, Ye X, Liu Y, Wang M, Zhang B, Zhang N, Huang S (2016) Interaction between susceptibility loci in cGAS-STING pathway, MHC gene and HPV infection on the risk of cervical precancerous lesions in Chinese population. Oncotarget 7:84228

    PubMed  PubMed Central  Google Scholar 

  19. Couzin-Frankel J (2013) Breakthrough of the year 2013. Cancer immunotherapy. Science 342:1432–1433

  20. Hellmann M, Rizvi N, Wolchok JD, Chan TA (2016) Genomic profile, smoking, and response to anti-PD-1 therapy in non-small cell lung carcinoma. Mol Cell Oncol 3:e1048929

    PubMed  Google Scholar 

  21. Maul LV, Weichenthal M, Kähler KC, Hauschild A (2016) Successful anti-PD-1 antibody treatment in a metastatic melanoma patient with known severe autoimmune disease. J Immunother 39:188–190

    CAS  PubMed  Google Scholar 

  22. Cheng W-C, Tsui Y-C, Ragusa S, Koelzer VH, Mina M, Franco F, Läubli H, Tschumi B, Speiser D, Romero P (2019) Uncoupling protein 2 reprograms the tumor microenvironment to support the anti-tumor immune cycle. Nat Immunol 20:206

    CAS  PubMed  Google Scholar 

  23. Kim C, Kim W, Han Y, Kim J, Chon H (2019) P-131 Cancer immunotherapy with STING agonist and PD-1 immune checkpoint inhibitor effectively suppresses peritoneal carcinomatosis of colon cancer. Ann Oncol 30:mdz155. 130

    Google Scholar 

  24. He W, Zhang H, Han F, Chen X, Lin R, Wang W, Qiu H, Zhuang Z, Liao Q, Zhang W (2017) CD155T/TIGIT signaling regulates CD8+ T-cell metabolism and promotes tumor progression in human gastric cancer. Cancer Res 77:6375–6388

    CAS  PubMed  Google Scholar 

  25. Meric-Bernstam F, Sandhu SK, Hamid O, Spreafico A, Luke JJ (2019) Phase ib study of miw815 (adu-s100) in combination with spartalizumab (pdr001) in patients (pts) with advanced/metastatic solid tumors or lymphomas. J Clin Oncol 37:2507

  26. Lin Q, Kang X, Li X, Wang T, Liu F, Jia J, Jin Z, Xue Y (2019) NF-κB-mediated regulation of rat CYP2E1 by two independent signaling pathways. PLoS One 14:e0225531

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Stetson DB, Medzhitov R (2006) Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24:93–103

    CAS  PubMed  Google Scholar 

  28. Lau L, Gray EE, Brunette RL, Stetson DB (2015) DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway. Science 350:568–571

    CAS  PubMed  Google Scholar 

  29. Shaikh MH, Bortnik V, McMillan NA, Idris A (2019) cGAS-STING responses are dampened in high-risk HPV type 16 positive head and neck squamous cell carcinoma cells. Microb Pathog 132:162–165

    CAS  PubMed  Google Scholar 

  30. Dorta-Estremera S, Hegde VL, Slay RB, Sun R, Yanamandra AV, Nicholas C, Nookala S, Sierra G, Curran MA, Sastry KJ (2019) Targeting interferon signaling and CTLA-4 enhance the therapeutic efficacy of anti-PD-1 immunotherapy in preclinical model of HPV+ oral cancer. J Immunother Cancer 7:252

    PubMed  PubMed Central  Google Scholar 

  31. Meric-Bernstam F, Sandhu SK, Hamid O, Spreafico A, Kasper S, Dummer R, Shimizu T, Steeghs N, Lewis N, Talluto CC, Dolan S, Bean A, Brown R, Trujillo D, Nair N, Luke JJ (2019) Phase Ib study of MIW815 (ADU-S100) in combination with spartalizumab (PDR001) in patients (pts) with advanced/metastatic solid tumors or lymphomas. J Clin Oncol 37:2507–2507

    Google Scholar 

  32. Tolba MF, Omar HA (2018) Immunotherapy, an evolving approach for the management of triple negative breast cancer: converting non-responders to responders. Crit Rev Oncol Hematol 122:202–207

    PubMed  Google Scholar 

  33. Saitoh T, Fujita N, Hayashi T, Takahara K, Akira S (2009) Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc Natl Acad Sci 106:20842–20846

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tindle RW (2002) Immune evasion in human papillomavirus-associated cervical cancer. Nat Rev Cancer 2:59–65

    CAS  PubMed  Google Scholar 

  35. Deonarain R, Verma A, Porter AC, Gewert DR, Platanias LC, Fish EN (2003) Critical roles for IFN-β in lymphoid development, myelopoiesis, and tumor development: links to tumor necrosis factor α. Proc Natl Acad Sci 100:13453–13458

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, Wang, Liu (2016) Poly (I:C) transfection induces mitochondrialmediated apoptosis in cervical cancer. Mol Med Rep 13(3):2689–2695

    CAS  PubMed  Google Scholar 

  37. Ling X, Marini F, Konopleva M, Schober W, Shi Y, Burks J, Clise-Dwyer K, Wang R-Y, Zhang W, Yuan X (2010) Mesenchymal stem cells overexpressing IFN-β inhibit breast cancer growth and metastases through Stat3 signaling in a syngeneic tumor model. Cancer Microenviron 3:83–95

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Barber GN (2015) STING: infection, inflammation and cancer. Nat Rev Immunol 15:760–770

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Fang R, Wang C, Jiang Q, Lv M, Gao P, Yu X, Mu P, Zhang R, Bi S, Feng J-M (2017) NEMO–IKKβ are essential for IRF3 and NF-κB activation in the cGAS–STING pathway. J Immunol 199:3222–3233

    CAS  PubMed  Google Scholar 

  40. Hunter CA, Jones SA (2015) IL-6 as a keystone cytokine in health and disease. Nat Immunol 16:448–457

    CAS  PubMed  Google Scholar 

  41. Bodur C, Kazyken D, Huang K, Ustunel BE, Siroky KA, Tooley AS, Gonzalez IE, Foley DH, Acosta-Jaquez HA, Barnes TM (2018) The IKK-related kinase TBK1 activates mTORC1 directly in response to growth factors and innate immune agonists. EMBO J 37:19–38

    CAS  PubMed  Google Scholar 

  42. Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, Du F, Ren J, Wu Y-T, Grishin NV (2015) Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347:aaa2630

    PubMed  Google Scholar 

  43. Möser CV, Stephan H, Altenrath K (2015) TANK-binding kinase 1 (TBK1) modulates inflammatory hyperalgesia by regulating MAP kinases and NF-κB dependent genes. J Neuroinflammation 12:100

    PubMed  PubMed Central  Google Scholar 

  44. Abe T, Barber GN (2014) Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-?B activation through TBK1. J Virol 88:5328–5341

    PubMed  PubMed Central  Google Scholar 

  45. Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, Schinzel AC, Sandy P, Meylan E, Scholl C (2009) Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462:108–112

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Corrales L, Desbien AL, Gauthier KES (2019) Tumor cell intrinsic STING signaling demonstrates minimal contribution to the anti-tumor response elicited by the STING agonist ADU-S100 (MIW815). Cancer Res 79

  47. Cai H, Yan L, Liu N, Xu M, Cai H (2020) IFI16 promotes cervical cancer progression by upregulating PD-L1 in immunomicroenvironment through STING-TBK1-NF-kB pathway. Biomed Pharmacother 123:109790

    Article  CAS  PubMed  Google Scholar 

  48. Hao J, Li Z, Zhang C, Yu W, Tang Z, Li Y, Feng X, Gao Y, Liu Q, Huang W (2017) Targeting NF-κB/AP-2β signaling to enhance antitumor activity of cisplatin by melatonin in hepatocellular carcinoma cells. Am J Cancer Res 7:13

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Grinberg-Bleyer Y, Caron R, Seeley JJ, De Silva NS, Schindler CW, Hayden MS, Klein U, Ghosh S (2018) The alternative NF-κB pathway in regulatory T cell homeostasis and suppressive function. J Immunol 200:2362–2371

    CAS  PubMed  Google Scholar 

  50. Sivick KE, Desbien AL, Glickman LH, Reiner GL, Corrales L, Surh NH, Hudson TE, Vu UT, Francica BJ, Banda T, Katibah GE, Kanne DB, Leong JJ, Metchette K, Bruml JR, Ndubaku CO, McKenna JM, Feng Y, Zheng L, Bender SL, Cho CY, Leong ML, van Elsas A, Dubensky TW Jr, McWhirter SM (2018) Magnitude of therapeutic STING activation determines CD8(+) T cell-mediated anti-tumor immunity. Cell Rep 25:3074–3085.e5. https://doi.org/10.1016/j.celrep.2018.11.047

    Article  CAS  PubMed  Google Scholar 

  51. Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359:1350–1355

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, F., Su, J., Wang, J. et al. Activation of STING inhibits cervical cancer tumor growth through enhancing the anti-tumor immune response. Mol Cell Biochem 476, 1015–1024 (2021). https://doi.org/10.1007/s11010-020-03967-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03967-5

Keywords

Navigation