Skip to main content

Advertisement

Log in

Omega-3 polyunsaturated fatty acids: anti-inflammatory and anti-hypertriglyceridemia mechanisms in cardiovascular disease

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cardiovascular disease (CVD) is the world’s most recognized and notorious cause of death. It is known that increased triglyceride-rich lipoproteins (TRLs) and remnants of triglyceride-rich lipoproteins (RLP) are the major risk factor for CVD. Furthermore, hypertriglyceridemia commonly leads to a reduction in HDL and an increase in atherogenic small dense low-density lipoprotein (sdLDL or LDL-III) levels. Thus, the evidence shows that Ω-3 fatty acids (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have a beneficial effect on CVD through reprogramming of TRL metabolism, reducing inflammatory mediators (cytokines and leukotrienes), and modulation of cell adhesion molecules. Therefore, the purpose of this review is to provide the molecular mechanism related to the beneficial effect of Ω-3 PUFA on the lowering of plasma TAG levels and other atherogenic lipoproteins. Taking this into account, this study also provides the TRL lowering and anti-inflammatory mechanism of Ω-3 PUFA metabolites such as RvE1 and RvD2 as a cardioprotective function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kris-Etherton PM, Harris WS, Appel LJ (2002) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106(21):2747–2757

    Article  PubMed  Google Scholar 

  2. Harris WS et al (2008) Omega-3 fatty acids and coronary heart disease risk: clinical and mechanistic perspectives. Atherosclerosis 197(1):12–24

    Article  CAS  PubMed  Google Scholar 

  3. Palmquist DL (2009) Omega-3 fatty acids in metabolism, health, and nutrition and for modified animal product foods. Prof Ani Sci 25(3):207–249

    Article  Google Scholar 

  4. Harris WS (1997) n-3 fatty acids and serum lipoproteins: human studies. Am J Clin Nutr 65(5):1645S–1654S

    Article  CAS  PubMed  Google Scholar 

  5. Calvo MJ et al (2017) Omega-3 polyunsaturated fatty acids and cardiovascular health: a molecular view into structure and function. Vessel Plus 1(3):116–128

    CAS  Google Scholar 

  6. Reimers A, Ljung H (2019) The emerging role of omega-3 fatty acids as a therapeutic option in neuropsychiatric disorders. Therap Adv Psychopharmacol 9:2045125319858901

    Article  CAS  Google Scholar 

  7. Shahidi F, Ambigaipalan P (2018) Omega-3 polyunsaturated fatty acids and their health benefits. Annu Rev Food Sci Technol 9:345–381

    Article  CAS  PubMed  Google Scholar 

  8. Calder PC (2017) Omega-3 fatty acids and inflammatory processes: from molecules to man. Biochem Soc Trans 45(5):1105–1115

    Article  CAS  PubMed  Google Scholar 

  9. Mohebi-Nejad A, Bikdeli B (2014) Omega-3 supplements and cardiovascular diseases. Tanaffos 13(1):6

    PubMed  PubMed Central  Google Scholar 

  10. Sampath H, Ntambi JM (2005) Polyunsaturated fatty acid regulation of genes of lipid metabolism. Annu Rev Nutr 25:317–340

    Article  CAS  PubMed  Google Scholar 

  11. Bradberry JC, Hilleman DE (2013) Overview of omega-3 fatty acid therapies. Pharm Ther 38(11):681

    Google Scholar 

  12. Kris-Etherton PM et al (2008) The role of tree nuts and peanuts in the prevention of coronary heart disease: multiple potential mechanisms. J Nutr 138(9):1746S–1751S

    Article  CAS  PubMed  Google Scholar 

  13. Xu Y et al (2014) Is the jury still out on the benefits of fish, seal and flax oils in cardiovascular disease. Ann Nutr Disord Ther 1:40

    Google Scholar 

  14. Calder PC (2015) Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance. Biochimica et Biophysica Acta (BBA) Mol Cell Biol Lipids 1851(4):469–484

    Article  CAS  Google Scholar 

  15. Holub DJ, Holub BJ (2004) Omega-3 fatty acids from fish oils and cardiovascular disease. Mol Cell Biochem 263(1):217–225

    Article  CAS  PubMed  Google Scholar 

  16. Shaikh NA, Tappia PS (2015) Why are there inconsistencies in the outcomes of some omega-3 fatty acid trials for the management of cardiovascular disease? Clin Lipidol 10(1):27–32

    Article  CAS  Google Scholar 

  17. Gammone MA et al (2019) Omega-3 polyunsaturated fatty acids: benefits and endpoints in sport. Nutrients 11(1):46

    Article  CAS  Google Scholar 

  18. Jacobson TA (2008) Role of n− 3 fatty acids in the treatment of hypertriglyceridemia and cardiovascular disease. Am J Clin Nutr 87(6):1981S–1990S

    Article  CAS  PubMed  Google Scholar 

  19. Skulas-Ray AC et al (2019) Omega-3 fatty acids for the management of hypertriglyceridemia: a science advisory from the American Heart Association. Circulation 140(12):e673–e691

    Article  CAS  PubMed  Google Scholar 

  20. National Cholesterol Education Program (US). Expert Panel on Detection, & Treatment of High Blood Cholesterol in Adults (2002) Third report of the National Cholesterol Education Program (NCEP) Expert Panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) (No. 2). National Cholesterol Education Program, National Heart, Lung, and Blood Institute, National Institutes of Health

  21. Blair HA, Dhillon S (2014) Omega-3 carboxylic acids (epanova®): a review of its use in patients with severe hypertriglyceridemia. Am J Cardiovasc Drugs 14(5):393–400

    Article  CAS  PubMed  Google Scholar 

  22. Yokoyama M et al (2007) Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet 369(9567):1090–1098

    Article  CAS  PubMed  Google Scholar 

  23. Mason RP (2019) New insights into mechanisms of action for omega-3 fatty acids in atherothrombotic cardiovascular disease. Curr Atheroscler Rep 21(1):2

    Article  CAS  Google Scholar 

  24. Adkins Y, Kelley DS (2010) Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids. J Nutr Biochem 21(9):781–792

    Article  CAS  PubMed  Google Scholar 

  25. Langsted A, Madsen CM, Nordestgaard BG (2020) Contribution of remnant cholesterol to cardiovascular risk. J Intern Med 288(1):116–127

    Article  CAS  PubMed  Google Scholar 

  26. Bhatt DL et al (2017) Rationale and design of REDUCE-IT: reduction of cardiovascular events with icosapent ethyl–intervention trial. Clin Cardiol 40(3):138–148

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kim ES, McCormack PL (2014) Icosapent ethyl: a review of its use in severe hypertriglyceridemia. Am J Cardiovasc Drugs 14(6):471–478

    Article  CAS  PubMed  Google Scholar 

  28. Sacks FM et al (2000) VLDL, apolipoproteins B, CIII, and E, and risk of recurrent coronary events in the Cholesterol and Recurrent Events (CARE) trial. Circulation 102(16):1886–1892

    Article  CAS  PubMed  Google Scholar 

  29. Kang S, Davis RA (2000) Cholesterol and hepatic lipoprotein assembly and secretion. Biochimica et Biophysica Acta (BBA) Mol Cell Biol Lipids 1529(1-3):223–230

    Article  CAS  Google Scholar 

  30. Sacks FM (2015) The crucial roles of apolipoproteins E and C-III in apoB lipoprotein metabolism in normolipidemia and hypertriglyceridemia. Curr Opin Lipidol 26(1):56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wolska A et al (2017) Apolipoprotein C-II: new findings related to genetics, biochemistry, and role in triglyceride metabolism. Atherosclerosis 267:49–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arca M et al (2018) Hypertriglyceridemia and omega-3 fatty acids: their often overlooked role in cardiovascular disease prevention. Nutr Metab Cardiovasc Dis 28(3):197–205

    Article  CAS  PubMed  Google Scholar 

  33. Bays HE et al (2008) Prescription omega-3 fatty acids and their lipid effects: physiologic mechanisms of action and clinical implications. Expert Rev Cardiovasc Ther 6(3):391–409

    Article  CAS  PubMed  Google Scholar 

  34. Alves-Bezerra M, Cohen DE (2011) Triglyceride metabolism in the liver. Compr Physiol 8(1):1–22

    Google Scholar 

  35. Feingold KR, Grunfeld C (2018) Introduction to lipids and lipoproteins. In endotext [internet]. MDText. com, Inc

  36. Dittrich J et al (2019) Plasma levels of apolipoproteins C-III, A-IV, and E are independently associated with stable atherosclerotic cardiovascular disease. Atherosclerosis 281:17–24

    Article  CAS  PubMed  Google Scholar 

  37. Rupp H (2009) Omacor®(prescription omega-3-acid ethyl esters 90): from severe rhythm disorders to hypertriglyceridemia. Adv Ther 26(7):675

    Article  CAS  PubMed  Google Scholar 

  38. Nordestgaard BG, Varbo A (2014) Triglycerides and cardiovascular disease. Lancet 384(9943):626–635

    Article  CAS  PubMed  Google Scholar 

  39. Bhatnagar D, Hussain F (2007) Omega-3 fatty acid ethyl esters (Omacor®) for the treatment of hypertriglyceridemia. Futur Lipidol 2(3):263–270

    Article  CAS  Google Scholar 

  40. Thériault S et al (2016) Frameshift mutation in the APOA5 gene causing hypertriglyceridemia in a Pakistani family: management and considerations for cardiovascular risk. J Clin Lipidol 10(5):1272–1277

    Article  PubMed  Google Scholar 

  41. Pejic RN, Lee DT (2006) Hypertriglyceridemia. J Am Board Fam Med 19(3):310–316

    Article  PubMed  Google Scholar 

  42. Packard CJ, Boren J, Taskinen MR (2020) Causes and consequences of hypertriglyceridemia. Front Endocrinol 11:252

    Article  Google Scholar 

  43. Parhofer KG, Laufs U (2019) The diagnosis and treatment of hypertriglyceridemia. Dtsch Arztebl Int 116(49):825

    PubMed  Google Scholar 

  44. Ruhaak LR, van der Laarse A, Cobbaert CM (2019) Apolipoprotein profiling as a personalized approach to the diagnosis and treatment of dyslipidaemia. Ann Clin Biochem 56(3):338

    Article  CAS  Google Scholar 

  45. Packard CJ, Saito Y (2004) Non− HDL cholesterol as a measure of atherosclerotic risk. J Atheroscler Thromb 11(1):6–14

    Article  CAS  PubMed  Google Scholar 

  46. Paredes S et al (2019) Novel and traditional lipid profiles in Metabolic Syndrome reveal a high atherogenicity. Sci Rep 9(1):1–7

    Google Scholar 

  47. Carr SS et al (2019) Non-HDL-cholesterol and apolipoprotein B compared with LDL-cholesterol in atherosclerotic cardiovascular disease risk assessment. Pathology 51(2):148–154

    Article  CAS  PubMed  Google Scholar 

  48. Sniderman AD (2005) Apolipoprotein B versus non–high-density lipoprotein cholesterol: and the winner is. Circulation 112(22):3366–3367

    Article  PubMed  Google Scholar 

  49. Pischon T et al (2005) Non–high-density lipoprotein cholesterol and apolipoprotein B in the prediction of coronary heart disease in men. Circulation 112(22):3375–3383

    Article  CAS  PubMed  Google Scholar 

  50. Miller M et al (2008) Impact of triglyceride levels beyond low-density lipoprotein cholesterol after acute coronary syndrome in the PROVE IT-TIMI 22 trial. J Am Coll Cardiol 51(7):724–730

    Article  CAS  PubMed  Google Scholar 

  51. Miller M, Ginsberg HN, Schaefer EJ (2008) Relative atherogenicity and predictive value of non–high-density lipoprotein cholesterol for coronary heart disease. Am J Cardiol 101(7):1003–1008

    Article  CAS  PubMed  Google Scholar 

  52. Robinson JG et al (2018) Eradicating the burden of atherosclerotic cardiovascular disease by lowering apolipoprotein B lipoproteins earlier in life. J Am Heart Assoc 7(20):e009778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Durrington PN (2002) Can measurement of apolipoprotein B replace the lipid profile in the follow-up of patients with lipoprotein disorders? Clin Chem 48(3):401–402

    Article  CAS  PubMed  Google Scholar 

  54. Campos H et al (2001) Low-density lipoprotein size, pravastatin treatment, and coronary events. Jama 286(12):1468–1474

    Article  CAS  PubMed  Google Scholar 

  55. Dai W et al (2019) Emerging evidences for the opposite role of apolipoprotein C3 and apolipoprotein A5 in lipid metabolism and coronary artery disease. Lipids Health Dis 18(1):220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ramms B, Gordts PL (2018) Apolipoprotein C-III in triglyceride-rich lipoprotein metabolism. Curr Opin Lipidol 29(3):171–179

    Article  CAS  PubMed  Google Scholar 

  57. Kawakami A et al (2006) Apolipoprotein CIII induces expression of vascular cell adhesion molecule-1 (VCAM-1) in vascular endothelial cells and increases adhesion of monocytic cells. Circulation 114(7):681–687

    Article  CAS  PubMed  Google Scholar 

  58. Garg R, Rustagi T (2018) Management of hypertriglyceridemia induced acute pancreatitis. BioMed Res Int 2018:12

    Article  CAS  Google Scholar 

  59. Shemesh E, Zafrir B (2019) Hypertriglyceridemia-related pancreatitis in patients with type 2 diabetes: links and risks. Diabetes Metab Syndr Obes Targets Ther 12:2041

    Article  CAS  Google Scholar 

  60. Chan DC et al (2003) Randomized controlled trial of the effect of n–3 fatty acid supplementation on the metabolism of apolipoprotein B-100 and chylomicron remnants in men with visceral obesity. Am J Clin Nutr 77(2):300–307

    Article  CAS  PubMed  Google Scholar 

  61. Oscarsson J, Hurt-Camejo E (2017) Omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid and their mechanisms of action on apolipoprotein B-containing lipoproteins in humans: a review. Lipids Health Dis 16(1):149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Tanaka N et al (2010) Eicosapentaenoic acid improves hepatic steatosis independent of PPARα activation through inhibition of SREBP-1 maturation in mice. Biochem Pharmacol 80(10):1601–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim CW et al (2017) Acetyl CoA carboxylase inhibition reduces hepatic steatosis but elevates plasma triglycerides in mice and humans: a bedside to bench investigation. Cell Metab 26(2):394–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Moon YA, Hammer RE, Horton JD (2009) Deletion of ELOVL5 leads to fatty liver through activation of SREBP-1c in mice. J Lipid Res 50(3):412–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ye J, DeBose-Boyd RA (2011) Regulation of cholesterol and fatty acid synthesis. Cold Spring Harb Perspect Biol 3(7):a004754

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Watt MJ et al (2019) The liver as an endocrine organ—linking NAFLD and insulin resistance. Endocr Rev 40(5):1367–1393

    Article  PubMed  Google Scholar 

  67. Khwairakpam AD et al (2020) The vital role of ATP citrate lyase in chronic diseases. J Mol Med 98(1):71–95

    Article  CAS  PubMed  Google Scholar 

  68. Hunkeler M et al (2018) Structural basis for regulation of human acetyl-CoA carboxylase. Nature 558(7710):470–474

    Article  CAS  PubMed  Google Scholar 

  69. Davidson MH (2006) Mechanisms for the hypotriglyceridemic effect of marine omega-3 fatty acids. Am J Cardiol 98(4):27–33

    Article  CAS  Google Scholar 

  70. McKenney JM, Sica D (2007) Prescription omega-3 fatty acids for the treatment of hypertriglyceridemia. Am J Health Syst Pharm 64(6):595–605

    Article  CAS  PubMed  Google Scholar 

  71. Jump J, D. B. (2002) The biochemistry of n-3 polyunsaturated fatty acids. J Biol Chem 277(11):8755–8758

    Article  CAS  PubMed  Google Scholar 

  72. Yoshikawa T et al (2002) Polyunsaturated fatty acids suppress sterol regulatory element-binding protein 1c promoter activity by inhibition of liver X receptor (LXR) binding to LXR response elements. J Biol Chem 277(3):1705–1711

    Article  CAS  PubMed  Google Scholar 

  73. Xu X et al (2013) Transcriptional control of hepatic lipid metabolism by SREBP and ChREBP. Semin Liver Dis 33(4):301. NIH Public Access

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Harris WS, Bulchandani D (2006) Why do omega-3 fatty acids lower serum triglycerides? Curr Opin Lipidol 17(4):387–393

    Article  CAS  PubMed  Google Scholar 

  75. Li D et al (2017) Identification of a novel human long non-coding RNA that regulates hepatic lipid metabolism by inhibiting SREBP-1c. Int J Biol Sci 13(3):349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Horton JD, Goldstein JL, Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109(9):1125–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kim HJ, Takahashi M, Ezaki O (1999) Fish oil feeding decreases mature sterol regulatory element-binding protein 1 (SREBP-1) by down-regulation of SREBP-1c mRNA in mouse liver a possible mechanism for down-regulation of lipogenic enzyme mRNAs. J Biol Chem 274(36):25892–25898

    Article  CAS  PubMed  Google Scholar 

  78. Rong S et al (2017) Expression of SREBP-1c requires SREBP-2-mediated generation of a sterol ligand for LXR in livers of mice. Elife 6:e25015

    Article  PubMed  PubMed Central  Google Scholar 

  79. Tajima-Shirasaki N et al (2017) Eicosapentaenoic acid down-regulates expression of the selenoprotein P gene by inhibiting SREBP-1c protein independently of the AMP-activated protein kinase pathway in H4IIEC3 hepatocytes. J Biol Chem 292(26):10791–10800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sagar NM et al (2016) Mechanisms of triglyceride metabolism in patients with bile acid diarrhea. World J Gastroenterol 22(30):6757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Neschen S et al (2002) Contrasting effects of fish oil and safflower oil on hepatic peroxisomal and tissue lipid content. Am J Physiol Endocrinol Metab 282(2):E395–E401

    Article  CAS  PubMed  Google Scholar 

  82. Chambrier C et al (2002) Eicosapentaenoic acid induces mRNA expression of peroxisome proliferator-activated receptor γ. Obes Res 10(6):518–525

    Article  CAS  PubMed  Google Scholar 

  83. Zhao A et al (2004) Polyunsaturated fatty acids are FXR ligands and differentially regulate expression of FXR targets. DNA Cell Biol 23(8):519–526

    Article  CAS  PubMed  Google Scholar 

  84. Sahebkar A et al (2018) Effect of omega-3 supplements on plasma apolipoprotein C-III concentrations: a systematic review and meta-analysis of randomized controlled trials. Ann Med 50(7):565–575

    Article  CAS  PubMed  Google Scholar 

  85. Siscovick DS et al (2017) Omega-3 polyunsaturated fatty acid (fish oil) supplementation and the prevention of clinical cardiovascular disease: a science advisory from the American Heart Association. Circulation 135(15):e867–e884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Endo J, Arita M (2016) Cardioprotective mechanism of omega-3 polyunsaturated fatty acids. J Cardiol 67(1):22–27

    Article  PubMed  Google Scholar 

  87. Darwesh AM et al (2019) Insights into the cardioprotective properties of n-3 PUFAs against ischemic heart disease via modulation of the innate immune system. Chem Biol Interact 308:20–44

    Article  CAS  PubMed  Google Scholar 

  88. Fredman G (2019) Can inflammation-resolution provide clues to treat patients according to their plaque phenotype? Front Pharmacol 10:205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Giacobbe J et al (2020) The anti-inflammatory role of omega-3 polyunsaturated fatty acids metabolites in pre-clinical models of psychiatric, neurodegenerative and neurological disorders. Front Psych 11:122

    Article  Google Scholar 

  90. Wang F et al (2020) Specialized pro-resolving mediators: it’s anti-oxidant stress role in multiple disease models. Mol Immunol 126:40–45

    Article  CAS  PubMed  Google Scholar 

  91. Li Q et al (2020) Maresins: anti-inflammatory pro-resolving mediators with therapeutic potential. Eur Rev Med Pharmacol Sci 24(13):7442–7453

    PubMed  Google Scholar 

  92. Mills SC, Windsor AC, Knight SC (2005) The potential interactions between polyunsaturated fatty acids and colonic inflammatory processes. Clin Exp Immunol 142(2):216–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Simopoulos AP (2002) Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr 21(6):495–505

    Article  CAS  PubMed  Google Scholar 

  94. Massaro M et al (2008) Omega–3 fatty acids, inflammation and angiogenesis: nutrigenomic effects as an explanation for anti-atherogenic and anti-inflammatory effects of fish and fish oils. Lifestyle Genomics 1(1-2):4–23

    CAS  Google Scholar 

  95. Viola JR et al (2016) Resolving lipid mediators maresin 1 and resolvin D2 prevent atheroprogression in mice. Circ Res 119(9):1030–1038

    Article  CAS  PubMed  Google Scholar 

  96. Thorp EB (2016) Proresolving lipid mediators restore balance to the vulnerable plaque. Am Heart Assoc 119:972–974

    CAS  Google Scholar 

  97. Fan YY et al (2003) Chemopreventive n-3 fatty acids activate RXRα in colonocytes. Carcinogenesis 24(9):1541–1548

    Article  CAS  PubMed  Google Scholar 

  98. Lalia AZ et al (2017) Influence of omega-3 fatty acids on skeletal muscle protein metabolism and mitochondrial bioenergetics in older adults. Aging (Albany NY) 9(4):1096

    Article  CAS  Google Scholar 

  99. Calder PC (2010) Omega-3 fatty acids and inflammatory processes. Nutrients 2(3):355–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I would like to forward my gratitude to the authors of the article, where I generate this review report.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

TS: Conceived the design, searching the literature, drafting, editing and wrote the whole manuscript.

Corresponding author

Correspondence to Tewodros Shibabaw.

Ethics declarations

Conflict of interest

The author declares that there is no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibabaw, T. Omega-3 polyunsaturated fatty acids: anti-inflammatory and anti-hypertriglyceridemia mechanisms in cardiovascular disease. Mol Cell Biochem 476, 993–1003 (2021). https://doi.org/10.1007/s11010-020-03965-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03965-7

Keywords

Navigation