Skip to main content
Log in

Androgen depletion alters the diurnal patterns to signals that regulate autophagy in the limb skeletal muscle

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hypogonadism contributes to limb skeletal muscle atrophy by increasing rates of muscle protein breakdown. Androgen depletion increases markers of the autophagy protein breakdown pathway in the limb muscle that persist throughout the diurnal cycle. However, the regulatory signals underpinning the increase in autophagy markers remain ill-defined. The purpose of this study was to characterize changes to autophagy regulatory signals in the limb skeletal muscle following androgen depletion. Male mice were subjected to a castration surgery or a sham surgery as a control. Seven weeks post-surgery, a subset of mice from each group was sacrificed every 4 hr over a 24 hr period. Protein and mRNA from the Tibialis Anterior (TA) were subjected to Western blot and RT-PCR. Consistent with an overall increase in autophagy, the phosphorylation pattern of Uncoordinated Like Kinase 1 (ULK1) (Ser555) was elevated throughout the diurnal cycle in the TA of castrated mice. Factors that induce the progression of autophagy were also increased in the TA following androgen depletion including an increase in the phosphorylation of c-Jun N-terminal Kinase (JNK) (Thr183/Tyr185) and an increase in the ratio of BCL-2 Associated X (BAX) to B-cell lymphoma 2 (BCL-2). Moreover, we observed an increase in the protein expression pattern of p53 and the mRNA of the p53 target genes Cyclin-Dependent Kinase Inhibitor 1A (p21) and Growth Arrest and DNA Damage Alpha (Gadd45a), which are known to increase autophagy and induce muscle atrophy. These data characterize novel changes to autophagy regulatory signals in the limb skeletal muscle following androgen deprivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Powers SK, Lynch GS, Murphy KT, Reid MB, Zijdewind I (2016) Disease-induced skeletal muscle atrophy and fatigue. Med Sci Sports Exerc 48:2307–2319. https://doi.org/10.1249/MSS.0000000000000975

    Article  PubMed  PubMed Central  Google Scholar 

  2. Srikanthan P, Karlamangla AS (2014) Muscle mass index as a predictor of longevity in older adults. Am J Med 127:547–553. https://doi.org/10.1016/j.amjmed.2014.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  3. Srikanthan P, Horwich TB, Tseng CH (2016) Relation of muscle mass and fat mass to cardiovascular disease mortality. Am J Cardiol 117:1355–1360. https://doi.org/10.1016/j.amjcard.2016.01.033

    Article  PubMed  Google Scholar 

  4. Joskova V, Patkova A, Havel E, Najpaverova S, Uramova D, Kovarik M, Zadak Z, Hronek M (2018) Critical evaluation of muscle mass loss as a prognostic marker of morbidity in critically ill patients and methods for its determination. J Rehabil Med 50:696–704. https://doi.org/10.2340/16501977-2368

    Article  PubMed  Google Scholar 

  5. Bhasin S, Storer TW, Berman N, Callegari C, Clevenger B, Phillips J, Bunnell TJ, Tricker R, Shirazi A, Casaburi R (1996) The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. N Engl J Med 335:1–7. https://doi.org/10.1056/NEJM199607043350101

    Article  CAS  PubMed  Google Scholar 

  6. Bhasin S, Storer TW, Berman N, Yarasheski KE, Clevenger B, Phillips J, Lee WP, Bunnell TJ, Casaburi R (1997) Testosterone replacement increases fat-free mass and muscle size in hypogonadal men. J Clin Endocrinol Metab 82:407–413. https://doi.org/10.1210/jcem.82.2.3733

    Article  CAS  PubMed  Google Scholar 

  7. Bhasin S, Woodhouse L, Casaburi R, Singh AB, Mac RP, Lee M, Yarasheski KE, Sinha-Hikim I, Dzekov C, Dzekov J, Magliano L, Storer TW (2005) Older men are as responsive as young men to the anabolic effects of graded doses of testosterone on the skeletal muscle. J Clin Endocrinol Metab 90:678–688. https://doi.org/10.1210/jc.2004-1184

    Article  CAS  PubMed  Google Scholar 

  8. Ferrando AA, Sheffield-Moore M, Yeckel CW, Gilkison C, Jiang J, Achacosa A, Lieberman SA, Tipton K, Wolfe RR, Urban RJ (2002) Testosterone administration to older men improves muscle function: molecular and physiological mechanisms. Am J Physiol Endocrinol Metab 282:E601–E607. https://doi.org/10.1152/ajpendo.00362.2001

    Article  CAS  PubMed  Google Scholar 

  9. Ferrando AA, Sheffield-Moore M, Paddon-Jones D, Wolfe RR, Urban RJ (2003) Differential anabolic effects of testosterone and amino acid feeding in older men. J Clin Endocrinol Metab 88:358–362. https://doi.org/10.1210/jc.2002-021041

    Article  CAS  PubMed  Google Scholar 

  10. Urban RJ, Bodenburg YH, Gilkison C, Foxworth J, Coggan AR, Wolfe RR, Ferrando A (1995) Testosterone administration to elderly men increases skeletal muscle strength and protein synthesis. Am J Phys 269:E820–E826

    CAS  Google Scholar 

  11. Kim J, Wang Z, Heymsfield SB, Baumgartner RN, Gallagher D (2002) Total-body skeletal muscle mass: estimation by a new dual-energy X-ray absorptiometry method. Am J Clin Nutr 76:378–383. https://doi.org/10.1093/ajcn/76.2.378

    Article  CAS  PubMed  Google Scholar 

  12. Metzger SO, Burnett AL (2016) Impact of recent FDA ruling on testosterone replacement therapy (TRT). Transl Androl Urol 5:921–926. https://doi.org/10.21037/tau.2016.09.08

    Article  PubMed  PubMed Central  Google Scholar 

  13. Amos-Landgraf JM, Heijmans J, Wielenga MC, Dunkin E, Krentz KJ, Clipson L, Ederveen AG, Groothuis PG, Mosselman S, Muncan V, Hommes DW, Shedlovsky A, Dove WF, van den Brink GR (2014) Sex disparity in colonic adenomagenesis involves promotion by male hormones, not protection by female hormones. Proc Natl Acad Sci U S A 111:16514–16519. https://doi.org/10.1073/pnas.1323064111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fowler JE, Whitmore WF (1982) Considerations for the use of testosterone with systemic chemotherapy in prostatic cancer. Cancer 49:1373–1377. https://doi.org/10.1002/1097-0142(19820401)49:7<1373::aid-cncr2820490712>3.0.co;2-g

    Article  PubMed  Google Scholar 

  15. Basaria S, Coviello AD, Travison TG, Storer TW, Farwell WR, Jette AM, Eder R, Tennstedt S, Ulloor J, Zhang A, Choong K, Lakshman KM, Mazer NA, Miciek R, Krasnoff J, Elmi A, Knapp PE, Brooks B, Appleman E, Aggarwal S, Bhasin G, Hede-Brierley L, Bhatia A, Collins L, LeBrasseur N, Fiore LD, Bhasin S (2010) Adverse events associated with testosterone administration. N Engl J Med 363:109–122. https://doi.org/10.1056/NEJMoa1000485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rossetti ML, Gordon BS (2017) The role of androgens in the regulation of muscle oxidative capacity following aerobic exercise training. Appl Physiol Nutr Metab 42:1001–1007. https://doi.org/10.1139/apnm-2017-0230

    Article  CAS  PubMed  Google Scholar 

  17. Rossetti ML, Steiner JL, Gordon BS (2018) Increased mitochondrial turnover in the skeletal muscle of fasted, castrated mice is related to the magnitude of autophagy activation and muscle atrophy. Mol Cell Endocrinol. https://doi.org/10.1016/j.mce.2018.01.017

  18. Rossetti ML, Esser KA, Lee C, Tomko RJ, Eroshkin AM, Gordon BS (2019) Disruptions to the limb muscle core molecular clock coincide with changes in mitochondrial quality control following androgen depletion. Am J Physiol Endocrinol Metab 317:E631–E645. https://doi.org/10.1152/ajpendo.00177.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Steiner JL, Fukuda DH, Rossetti ML, Hoffman JR, Gordon BS (2017) Castration alters protein balance after high-frequency muscle contraction. J Appl Physiol (1985) 122:264–272. https://doi.org/10.1152/japplphysiol.00740.2016

    Article  CAS  Google Scholar 

  20. Serra C, Sandor NL, Jang H, Lee D, Toraldo G, Guarneri T, Wong S, Zhang A, Guo W, Jasuja R, Bhasin S (2013) The effects of testosterone deprivation and supplementation on proteasomal and autophagy activity in the skeletal muscle of the male mouse: differential effects on high-androgen responder and low-androgen responder muscle groups. Endocrinology 154:4594–4606. https://doi.org/10.1210/en.2013-1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dikic I, Elazar Z (2018) Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 19:349–364. https://doi.org/10.1038/s41580-018-0003-4

    Article  CAS  PubMed  Google Scholar 

  22. Gordon BS, Liu C, Steiner JL, Nader GA, Jefferson LS, Kimball SR (2016) Loss of REDD1 augments the rate of the overload-induced increase in muscle mass. Am J Physiol Regul Integr Comp Physiol 311:R545–R557. https://doi.org/10.1152/ajpregu.00159.2016

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141. https://doi.org/10.1038/ncb2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim J, Guan KL (2013) AMPK connects energy stress to PIK3C3/VPS34 regulation. Autophagy 9:1110–1111. https://doi.org/10.4161/auto.24877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Russell RC, Yuan HX, Guan KL (2014) Autophagy regulation by nutrient signaling. Cell Res 24:42–57. https://doi.org/10.1038/cr.2013.166

    Article  CAS  PubMed  Google Scholar 

  26. Lira VA, Okutsu M, Zhang M, Greene NP, Laker RC, Breen DS, Hoehn KL, Yan Z (2013) Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance. FASEB J 27:4184–4193. https://doi.org/10.1096/fj.13-228486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fry CS, Drummond MJ, Glynn EL, Dickinson JM, Gundermann DM, Timmerman KL, Walker DK, Volpi E, Rasmussen BB (2013) Skeletal muscle autophagy and protein breakdown following resistance exercise are similar in younger and older adults. J Gerontol A Biol Sci Med Sci 68:599–607. https://doi.org/10.1093/gerona/gls209

    Article  CAS  PubMed  Google Scholar 

  28. Jacobi D, Liu S, Burkewitz K, Kory N, Knudsen NH, Alexander RK, Unluturk U, Li X, Kong X, Hyde AL, Gangl MR, Mair WB, Lee CH (2015) Hepatic Bmal1 regulates rhythmic mitochondrial dynamics and promotes metabolic fitness. Cell Metab 22:709–720. https://doi.org/10.1016/j.cmet.2015.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cao X, Rui L, Pennington PR, Chlan-Fourney J, Jiang Z, Wei Z, Li XM, Edmondson DE, Mousseau DD (2009) Serine 209 resides within a putative p38(MAPK) consensus motif and regulates monoamine oxidase-A activity. J Neurochem 111:101–110. https://doi.org/10.1111/j.1471-4159.2009.06300.x

    Article  CAS  PubMed  Google Scholar 

  30. Liu Z, Sin KWT, Ding H, Doan HA, Gao S, Miao H, Wei Y, Wang Y, Zhang G, Li YP (2018) p38β MAPK mediates ULK1-dependent induction of autophagy in skeletal muscle of tumor-bearing mice. Cell Stress 2:311–324. https://doi.org/10.15698/cst2018.11.163

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wong PM, Feng Y, Wang J, Shi R, Jiang X (2015) Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2A. Nat Commun 6:8048. https://doi.org/10.1038/ncomms9048

    Article  CAS  PubMed  Google Scholar 

  32. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939. https://doi.org/10.1016/j.cell.2005.07.002

    Article  CAS  PubMed  Google Scholar 

  33. Marquez RT, Xu L (2012) Bcl-2:Beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch. Am J Cancer Res 2:214–221

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wei Y, Pattingre S, Sinha S, Bassik M, Levine B (2008) JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30:678–688. https://doi.org/10.1016/j.molcel.2008.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lindqvist LM, Heinlein M, Huang DC, Vaux DL (2014) Prosurvival Bcl-2 family members affect autophagy only indirectly, by inhibiting Bax and Bak. Proc Natl Acad Sci U S A 111:8512–8517. https://doi.org/10.1073/pnas.1406425111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tam BT, Yu AP, Tam EW, Monks DA, Wang XP, Pei XM, Koh SP, Sin TK, Law HKW, Ugwu FN, Supriya R, Yung BY, Yip SP, Wong SC, Chan LW, Lai CW, Ouyang P, Siu PM (2018) Ablation of Bax and Bak protects skeletal muscle against pressure-induced injury. Sci Rep 8:3689. https://doi.org/10.1038/s41598-018-21853-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fox DK, Ebert SM, Bongers KS, Dyle MC, Bullard SA, Dierdorff JM, Kunkel SD, Adams CM (2014) p53 and ATF4 mediate distinct and additive pathways to skeletal muscle atrophy during limb immobilization. Am J Physiol Endocrinol Metab 307:E245–E261. https://doi.org/10.1152/ajpendo.00010.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. White E (2016) Autophagy and p53. Cold Spring Harb Perspect Med 6:a026120. https://doi.org/10.1101/cshperspect.a026120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gotoh T, Vila-Caballer M, Santos CS, Liu J, Yang J, Finkielstein CV (2014) The circadian factor Period 2 modulates p53 stability and transcriptional activity in unstressed cells. Mol Biol Cell 25:3081–3093. https://doi.org/10.1091/mbc.E14-05-0993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Denisenko TV, Pivnyuk AD, Zhivotovsky B (2018) p53-autophagy-metastasis link. Cancers (Basel) 10. https://doi.org/10.3390/cancers10050148

  41. Capparelli C, Chiavarina B, Whitaker-Menezes D, Pestell TG, Pestell RG, Hulit J, Andò S, Howell A, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2012) CDK inhibitors (p16/p19/p21) induce senescence and autophagy in cancer-associated fibroblasts, “fueling” tumor growth via paracrine interactions, without an increase in neo-angiogenesis. Cell Cycle 11:3599–3610. https://doi.org/10.4161/cc.21884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ebert SM, Dyle MC, Kunkel SD, Bullard SA, Bongers KS, Fox DK, Dierdorff JM, Foster ED, Adams CM (2012) Stress-induced skeletal muscle Gadd45a expression reprograms myonuclei and causes muscle atrophy. J Biol Chem 287:27290–27301. https://doi.org/10.1074/jbc.M112.374777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. White JP, Billin AN, Campbell ME, Russell AJ, Huffman KM, Kraus WE (2018) The AMPK/p27 Kip1 axis regulates autophagy/apoptosis decisions in aged skeletal muscle stem cells. Stem Cell Reports 11:425–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brady OA, Jeong E, Martina JA, Pirooznia M, Tunc I, Puertollano R (2018) The transcription factors TFE3 and TFEB amplify p53 dependent transcriptional programs in response to DNA damage. Elife 7. https://doi.org/10.7554/eLife.40856

  45. Wang S, Chen Y, Li X, Zhang W, Liu Z, Wu M, Pan Q, Liu H (2020) Emerging role of transcription factor EB in mitochondrial quality control. Biomed Pharmacother 128:110272. https://doi.org/10.1016/j.biopha.2020.110272

    Article  CAS  PubMed  Google Scholar 

  46. Ebert SM, Monteys AM, Fox DK, Bongers KS, Shields BE, Malmberg SE, Davidson BL, Suneja M, Adams CM (2010) The transcription factor ATF4 promotes skeletal myofiber atrophy during fasting. Mol Endocrinol 24:790–799. https://doi.org/10.1210/me.2009-0345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kimball SR, Jefferson LS (2012) Induction of REDD1 gene expression in the liver in response to endoplasmic reticulum stress is mediated through a PERK, eIF2α phosphorylation, ATF4-dependent cascade. Biochem Biophys Res Commun 427:485–489. https://doi.org/10.1016/j.bbrc.2012.09.074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Laker RC, Drake JC, Wilson RJ, Lira VA, Lewellen BM, Ryall KA, Fisher CC, Zhang M, Saucerman JJ, Goodyear LJ, Kundu M, Yan Z (2017) Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy. Nat Commun 8:548. https://doi.org/10.1038/s41467-017-00520-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bujak AL, Crane JD, Lally JS, Ford RJ, Kang SJ, Rebalka IA, Green AE, Kemp BE, Hawke TJ, Schertzer JD, Steinberg GR (2015) AMPK activation of muscle autophagy prevents fasting-induced hypoglycemia and myopathy during aging. Cell Metab 21:883–890. https://doi.org/10.1016/j.cmet.2015.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Drake JC, Yan Z (2017) Mitophagy in maintaining skeletal muscle mitochondrial proteostasis and metabolic health with ageing. J Physiol 595:6391–6399. https://doi.org/10.1113/JP274337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. White JP, Gao S, Puppa MJ, Sato S, Welle SL, Carson JA (2013) Testosterone regulation of Akt/mTORC1/FoxO3a signaling in skeletal muscle. Mol Cell Endocrinol 365:174–186. https://doi.org/10.1016/j.mce.2012.10.019

    Article  CAS  PubMed  Google Scholar 

  52. Ghanim H, Dhindsa S, Batra M, Green K, Abuaysheh S, Kuhadiya ND, Makdissi A, Chaudhuri A, Sandhu S, Dandona P (2020) Testosterone increases the expression and phosphorylation of AMP kinase α in men with hypogonadism and type 2 diabetes. J Clin Endocrinol Metab 105. https://doi.org/10.1210/clinem/dgz288

  53. Kaplan SA, Crawford ED (2006) Relationship between testosterone levels, insulin sensitivity, and mitochondrial function in men. Diabetes Care 29:749; author reply 749–750. https://doi.org/10.2337/diacare.29.03.06.dc05-2100

    Article  PubMed  Google Scholar 

  54. Cárdenas C, Miller RA, Smith I, Bui T, Molgó J, Müller M, Vais H, Cheung KH, Yang J, Parker I, Thompson CB, Birnbaum MJ, Hallows KR, Foskett JK (2010) Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142:270–283. https://doi.org/10.1016/j.cell.2010.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cárdenas C, Müller M, McNeal A, Lovy A, Jaňa F, Bustos G, Urra F, Smith N, Molgó J, Diehl JA, Ridky TW, Foskett JK (2016) Selective vulnerability of cancer cells by inhibition of Ca(2+) transfer from endoplasmic reticulum to mitochondria. Cell Rep 15:219–220. https://doi.org/10.1016/j.celrep.2016.03.045

    Article  CAS  PubMed  Google Scholar 

  56. Rossetti ML, Fukuda DH, Gordon BS (2018) Androgens induce growth of the limb skeletal muscles in a rapamycin-insensitive manner. Am J Physiol Regul Integr Comp Physiol. https://doi.org/10.1152/ajpregu.00029.2018

  57. Giaccia AJ, Kastan MB (1998) The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev 12:2973–2983. https://doi.org/10.1101/gad.12.19.2973

    Article  CAS  PubMed  Google Scholar 

  58. Pan C, Singh S, Sahasrabudhe DM, Chakkalakal JV, Krolewski JJ, Nastiuk KL (2016) TGFβ superfamily members mediate androgen deprivation therapy-induced obese frailty in male mice. Endocrinology 157:4461–4472. https://doi.org/10.1210/en.2016-1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang DT, Yang YJ, Huang RH, Zhang ZH, Lin X (2015) Myostatin activates the ubiquitin-proteasome and autophagy-lysosome systems contributing to muscle wasting in chronic kidney disease. Oxidative Med Cell Longev 2015:684965. https://doi.org/10.1155/2015/684965

    Article  CAS  Google Scholar 

  60. Smuder AJ, Sollanek KJ, Nelson WB, Min K, Talbert EE, Kavazis AN, Hudson MB, Sandri M, Szeto HH, Powers SK (2018) Crosstalk between autophagy and oxidative stress regulates proteolysis in the diaphragm during mechanical ventilation. Free Radic Biol Med 115:179–190. https://doi.org/10.1016/j.freeradbiomed.2017.11.025

    Article  CAS  PubMed  Google Scholar 

  61. Sandri M (2013) Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol 45:2121–2129. https://doi.org/10.1016/j.biocel.2013.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by funds from Institute of Successful Longevity and Florida State University to BSG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley S. Gordon.

Ethics declarations

Conflict of Interest

The authors report no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossetti, M.L., Tomko, R.J. & Gordon, B.S. Androgen depletion alters the diurnal patterns to signals that regulate autophagy in the limb skeletal muscle. Mol Cell Biochem 476, 959–969 (2021). https://doi.org/10.1007/s11010-020-03963-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03963-9

Keywords

Navigation