Skip to main content

Advertisement

Log in

GAS5 knockdown suppresses inflammation and oxidative stress induced by oxidized low-density lipoprotein in macrophages by sponging miR-135a

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

A large number of long non-coding RNAs have been confirmed to play vital roles in regulating various biological processes. Abnormal expression of growth arrest-specific transcript 5 (GAS5) is reported to be involved in the development of atherosclerosis (AS). This work is to explore the detailed mechanism underling how GAS5 regulates AS progression. We found that the abundance of GAS5 was markedly increased, and miR-135a was decreased in AS patient serums and ox-LDL-induced human THP-1 cells dose and time dependently. Interference of GAS5 suppressed inflammation and oxidative stress induced by ox-LDL in THP-1 cells. Mechanistically, GAS5 acted as a molecular sponge of microRNA-135a (miR-135a). Rescue assays indicated that knockdown of miR-135a partially rescued small interference RNA for GAS5-inhibited inflammatory cytokines release and oxidative stress in ox-LDL-triggered THP-1 cells. In conclusion, the absence of GAS5-inhibited inflammatory response and oxidative stress induced by ox-LDL in THP-1 cells via sponging miR-135a, providing a deep insight into the molecular target for AS treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Libby P (2012) Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol 32:2045–2051. https://doi.org/10.1161/ATVBAHA.108.179705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cahill PA, Redmond EM (2016) Vascular endothelium-gatekeeper of vessel health. Atherosclerosis 248:97–109. https://doi.org/10.1016/j.atherosclerosis.2016.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lusis AJ (2000) Atherosclerosis Nature 407:233–241. https://doi.org/10.1038/35025203

    Article  CAS  PubMed  Google Scholar 

  4. Sobenin IA, Zhelankin AV, Sinyov VV, Bobryshev YV, Orekhov AN (2015) Mitochondrial aging: focus on mitochondrial DNA damage in atherosclerosis-a mini-review. Gerontology 61:343–349. https://doi.org/10.1159/000368923

    Article  CAS  PubMed  Google Scholar 

  5. Chistiakov DA, Orekhov AN, Bobryshev YV (2016) LOX-1-mediated effects on vascular cells in atherosclerosis. Cell Physiol Biochem 38:1851–1859. https://doi.org/10.1159/000443123

    Article  CAS  PubMed  Google Scholar 

  6. Bunch H (2017) Gene regulation of mammalian long non-coding RNA. Mol Genet Genomics 293(1):1–15. https://doi.org/10.1007/s00438-017-1370-9

    Article  CAS  PubMed  Google Scholar 

  7. Liu Y, Zheng L, Wang Q, Hu YW (2017) Emerging roles and mechanisms of long noncoding RNAs in atherosclerosis. Int J Cardiol 228:570–582. https://doi.org/10.1155/2019/7159592

    Article  CAS  PubMed  Google Scholar 

  8. Zhou T, Ding JW, Wang XA, Zheng XX (2016) Long noncoding RNAs and atherosclerosis. Atherosclerosis 248:51–61. https://doi.org/10.1016/j.atherosclerosis.2016.02.025

    Article  CAS  PubMed  Google Scholar 

  9. Chen C, Cheng G, Yang X, Li C, Shi R, Zhao N (2016) Tanshinol suppresses endothelial cells apoptosis in mice with atherosclerosis via lncRNA TUG1 up-regulating the expression of miR-26a. Am J Transl Res 8:2981–2891

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu G, Cai J, Han Y, Chen J, Huang ZP, Chen C, Cai Y, Huang H, Yang Y, Liu Y, Xu Z, He D, Zhang X, Hu X, Pinello L, Zhong D, He F, Yuan GC, Wang DZ, Zeng C (2014) LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation 130:1452–1465. https://doi.org/10.1161/CIRCULATIONAHA.114.011675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schneider C, King RM, Philipson L (1988) Genes specifically expressed at growth arrest of mammalian cells. Cell 54:787–793. https://doi.org/10.1016/s0092-8674(88)91065-3

    Article  CAS  PubMed  Google Scholar 

  12. Liu Z, Wang W, Jiang J, Bao E, Xu D, Zeng Y, Tao L, Qiu J (2013) Downregulation of GAS5 promotes bladder cancer cell proliferation, partly by regulating CDK6. PLoS ONE 8:e73991. https://doi.org/10.1371/journal.pone.0073991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pickard MR, Williams GT (2014) Regulation of apoptosis by long non-coding RNA GAS5 in breast cancer cells: implications for chemotherapy. Breast Cancer Res Treat 145:359–370. https://doi.org/10.1007/s10549-014-2974-y

    Article  CAS  PubMed  Google Scholar 

  14. Cao S, Liu W, Li F, Zhao W, Qin C (2014) Decreased expression of lncRNA GAS5 predicts a poor prognosis in cervical cancer. Int J Clin Exp Pathol 7:6776–6783

    PubMed  PubMed Central  Google Scholar 

  15. Sun M, Jin FY, Xia R, Kong R, Li JH, Xu TP, Liu YW, Zhang EB, Liu XH, De W (2014) Decreased expression of long noncoding RNA GAS5 indicates a poor prognosis and promotes cell proliferation in gastric cancer. BMC Cancer 14:319. https://doi.org/10.1186/1471-2407-14-319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yin D, He X, Zhang E, Kong R, De W, Zhang Z (2014) Long noncoding RNA GAS5 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer. Med Oncol 31:253. https://doi.org/10.1007/s12032-014-0253-8

    Article  CAS  PubMed  Google Scholar 

  17. Mayama T, Marr AK, Kino T (2016) Differential expression of glucocorticoid receptor noncoding RNA repressor gas5 in autoimmune and inflammatory diseases. Horm Metab Res 48:550–557. https://doi.org/10.1055/s-0042-106898

    Article  CAS  PubMed  Google Scholar 

  18. Chen L, Yang W, Guo Y, Chen W, Zheng P, Zeng J, Tong W (2017) Exosomal lncRNA GAS5 regulates the apoptosis of macrophages and vascular endothelial cells in atherosclerosis. PLoS ONE 12:e0185406. https://doi.org/10.1371/journal.pone.0185406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Herrington W, Lacey B, Sherliker P, Armitage J, Lewington S (2016) Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ Res 118:535–546. https://doi.org/10.1161/CIRCRESAHA.115.307611

    Article  CAS  PubMed  Google Scholar 

  20. Lee YW, Kim PH, Lee WH, Hirani AA (2010) Interleukin-4, oxidative stress, vascular inflammation and atherosclerosis. Biomol Ther (Seoul) 18:135–144. https://doi.org/10.4062/biomolther.2010.18.2.135

    Article  CAS  Google Scholar 

  21. Pirillo A, Norata GD, Catapano AL (2013) LOX-1, oxLDL, and atherosclerosis. Mediators Inflamm 2013:152786. https://doi.org/10.1155/2013/152786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shen Z, She Q (2018) Association between the deletion allele of ins/del polymorphism (rs145204276) in the promoter region of gas5 with the risk of atherosclerosis. Cell Physiol Biochem 49:1431–1443. https://doi.org/10.1159/000493447

    Article  CAS  PubMed  Google Scholar 

  23. Liang W, Fan T, Liu L, Zhang L (2019) Knockdown of growth-arrest specific transcript 5 restores oxidized low-density lipoprotein-induced impaired autophagy flux via upregulating miR-26a in human endothelial cells. Eur J Pharmacol 843:154–161. https://doi.org/10.1016/j.ejphar.2018.11.005

    Article  CAS  PubMed  Google Scholar 

  24. Shen S, Zhen X, Zhu Z, Zhao S, Zhou Q, Song Z, Wang G, Wang Z (2019) Silencing of GAS5 represses the malignant progression of atherosclerosis through upregulation of miR-135a. Biomed Pharmacother 118:109302. https://doi.org/10.1016/j.biopha.2019.109302

    Article  CAS  PubMed  Google Scholar 

  25. Ye J, Wang C, Wang D, Yuan H (2018) LncRBA GSA5, up-regulated by ox-LDL, aggravates inflammatory response and MMP expression in THP-1 macrophages by acting like a sponge for miR-221. Exp Cell Res 369:348–355. https://doi.org/10.1016/j.yexcr.2018.05.039

    Article  CAS  PubMed  Google Scholar 

  26. Jian L, Jian D, Chen Q, Zhang L (2016) Long noncoding RNAs in atherosclerosis. J Atheroscler Thromb 23:376–384. https://doi.org/10.5551/jat.33167

    Article  CAS  PubMed  Google Scholar 

  27. Wu H, Huang M, Cao P, Wang T, Shu Y, Liu P (2012) MiR-135a targets JAK2 and inhibits gastric cancer cell proliferation. Cancer Biol Ther 13:281–288. https://doi.org/10.4161/cbt.18943

    Article  CAS  PubMed  Google Scholar 

  28. Tang W, Jiang Y, Mu X, Xu L, Cheng W, Wang X (2014) MiR-135a functions as a tumor suppressor in epithelial ovarian cancer and regulates HOXA10 expression. Cell Signal 26:1420–1426. https://doi.org/10.1016/j.cellsig.2014.03.002

    Article  CAS  PubMed  Google Scholar 

  29. Leung CO, Deng W, Ye TM, Ngan HY, Tsao SW, Cheung AN, Pang RT, Yeung WS (2014) miR-135a leads to cervical cancer cell transformation through regulation of β-catenin via a SIAH1-dependent ubiquitin proteosomal pathway. Carcinogenesis 35:1931–1940. https://doi.org/10.1093/carcin/bgu032

    Article  CAS  PubMed  Google Scholar 

  30. Lu X, Yin D, Zhou B, Li T (2018) MiR-135a promotes inflammatory responses of vascular smooth muscle cells from db/db mice via downregulation of FOXO1. Int Heart J 59:170–179. https://doi.org/10.1536/ihj.17-040

    Article  CAS  PubMed  Google Scholar 

  31. Desgagné V, Guay SP, Guérin R, Corbin F, Couture P, Lamarche B, Bouchard L (2016) Variations in HDL-carried miR-223 and miR-135a concentrations after consumption of dietary trans fat are associated with changes in blood lipid and inflammatory markers in healthy men - an exploratory study. Epigenetics 11:438–448. https://doi.org/10.1080/15592294.2016.1176816

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lou C, Li Y (2018) Functional role of microRNA-135a in colitis. J Inflamm (Lond) 15:7. https://doi.org/10.1186/s12950-018-0181-z

    Article  CAS  Google Scholar 

  33. Yan X, Li W, Yang L, Dong W, Chen W, Mao Y, Xu P, Li D, Yuan H, Li YH (2018) MiR-135a protects vascular endothelial cells against ventilator-induced lung injury by inhibiting PHLPP2 to activate PI3K/Akt pathway. Cell Physiol Biochem 48:1245–1258. https://doi.org/10.1159/000492010

    Article  CAS  PubMed  Google Scholar 

  34. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146:353–358. https://doi.org/10.1016/j.cell.2011.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang Z, Zhu Z, Watabe K, Zhang X, Bai C, Xu M, Wu F, Mo YY (2013) Negative regulation of lncRNA GAS5 by miR-21. Cell Death Differ 20:1558–1568. https://doi.org/10.1038/cdd.2013.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Yin.

Ethics declarations

Conflict of interest

The authors have no potential conflicts of interest to disclose.

Ethical approval

The present study was performed with the approval of the Research Ethics Committee of Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, and all participants signed the written informed consent prior to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11010_2020_3962_MOESM1_ESM.tif

Supplementary file1 The correlation analysis between GAS5 and inflammatory factors in AS patients. (A-C) Inflammatory cytokines IL-1β, IL-6, and TNF-α in serums samples from AS patients (n=26) and healthy donors (n=18) was detected. (D-F) Pearson correlation analysis was applied to evaluate the expression association between GAS5 and Inflammatory cytokines IL-1β, IL-6, and TNF-α in AS patients. GAS5= growth-arrest specific transcript 5, I = interleukin, TNF = tumor necrosis factor. *P < 0.05 (TIF 929 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Lu, X., Yang, M. et al. GAS5 knockdown suppresses inflammation and oxidative stress induced by oxidized low-density lipoprotein in macrophages by sponging miR-135a. Mol Cell Biochem 476, 949–957 (2021). https://doi.org/10.1007/s11010-020-03962-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03962-w

Keywords

Navigation