Skip to main content
Log in

Effect of cytosine hydroxymethylation on DNA charge transport

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

DNA hydroxymethylation plays a very important role in some biological processes, such as DNA methylation process. In addition, its presence can also cause some diseases. In this paper, the electrical properties of cytosine hydroxymethylated (Chm) DNA sequences are studied. The density functional theory (DFT) and Landauer–Büttiker framework are used to study the decoherence conductance and transmission of the Chm strands in different configurations, which provides a theoretical basis for the detection of Chm. The results show that the conductance of the hydroxymethylated DNA strand is smaller than that of the native and methylated strands. The length dependence of the Chm strands is also studied. With the length increasing, the conductance becomes larger. This study shows that DNA methylation can be detected electrically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data used to support the funding of this study are included within the article. The data and materials in the current study are available from the corresponding author on reasonable requests.

References

  1. Arkin MR, Stemp EDA, Holmlin RE, Barton JK, Hormann A, Olson EJC (1996) PF Rates of DNA-mediated electron transfer between metallointercalators. Science 273:475–480. https://doi.org/10.1126/science.273.5274.475

    Article  CAS  PubMed  Google Scholar 

  2. Fink HW, Schnenberger C (1999) Electrical conduction through DNA molecules. Nature 398:407–410. https://doi.org/10.1038/18855

    Article  CAS  PubMed  Google Scholar 

  3. Yoo KH, Ha DH, Lee JO, Park JW, Kim J, Kim JJ, Lee HY, Kawai T, Choi HY (2001) Electrical Conduction through Poly(dA)-Poly(dT) and Poly(dG)-Poly(dC) DNA Molecules. Phys Rev Lett 87:198102. https://doi.org/10.1103/PhysRevLett.87.198102

    Article  CAS  PubMed  Google Scholar 

  4. de Pablo PJ, Moreno-Herrero F, Colchero J, Gomez-Herrero J, Herrero P, Baro AM, Ordejon P, Soler JM, Ec A (2000) Absence of dc-conductivity in lambda-DNA. Phys Rev Lett 85:4992. https://doi.org/10.1103/PhysRevLett.85.4992

    Article  PubMed  Google Scholar 

  5. Macfarlane RJ, Lee B, Hill HD, Senesi AJ, Seifert S, Mirkin CA (2009) Molecular recognition and self-assembly special feature Assembly and organization processes in DNA-directed colloidal crystallization. Proc Natl Acad Sci USA 106:10493. https://doi.org/10.1073/pnas.0900630106

    Article  PubMed  Google Scholar 

  6. Cuevas JC, Scheer E (2010) Molecular electronics : an introduction to theory and experiment. World Scientific. https://doi.org/10.1142/7434

    Article  Google Scholar 

  7. Wang ZG, Wu HH, Li Q, Besenbacher F, Li YR, Zeng XC, Dong MD (2020) Reversing Interfacial Catalysis of Ambipolar Wse2 Single Crystal. Advanced Science 7:1901382. https://doi.org/10.1002/advs.201901382

    Article  CAS  PubMed  Google Scholar 

  8. Wang ZG, Li Q, Chen YF, Cui BX, Li YR, Besenbacher F, Dong MD (2018) The ambipolar transport behavior of WSe2 transistors and its analogue circuits. NPG Asia Materials 10:703–712. https://doi.org/10.1038/s41427-018-0062-1

    Article  CAS  Google Scholar 

  9. Guo AM, Yang Z, Zhu HJ, Xiong SJ (2010) Influence of backbone on the charge transport properties of G4-DNA molecules: a model-based calculation. J Phys: Condens Matter 22:065102. https://doi.org/10.1088/0953-8984/22/6/065102

    Article  CAS  Google Scholar 

  10. Wang XF, Chakraborty T, Berashevich J (2010) Quantum transport anomalies in DNA containing mispairs. Nanotechnology 21:485101. https://doi.org/10.1088/0957-4484/21/48/485101

    Article  CAS  PubMed  Google Scholar 

  11. Edirisinghe N, Apalkov V, Berashevich J, Chakraborty T (2010) Electrical current through DNA containing mismatched base pairs. Nanotechnology 21:245101. https://doi.org/10.1088/0957-4484/21/24/245101

    Article  CAS  PubMed  Google Scholar 

  12. Teschome B, Facsko S, Schönherr T, Kerbusch J, Keller A, Erbe A (2016) Temperature-dependent charge transport through individually contacted DNA origami-based Au nanowires. Langmuir 32:10159–10165. https://doi.org/10.1021/acs.langmuir.6b01961

    Article  CAS  PubMed  Google Scholar 

  13. Kypr J, Kejnovska I, Renciuk D, Vorlickova M (2009) Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res 37:1713–1725. https://doi.org/10.1093/nar/gkp026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wolter M, Elstner M, Kubar T (2013) Charge transport in desolvated DNA. Journal of Chemical Physics 139:125102. https://doi.org/10.1063/1.4821594

    Article  CAS  Google Scholar 

  15. Qi J, Anantram MP (2014a) Charge Transport through Methylated DNA Strand. J Chem Phys 143(9):094306. https://doi.org/10.1063/1.4929909

    Article  CAS  Google Scholar 

  16. Fernandez AF, Bayón GF, Sierra MI, Urdinguio RG, Torano E, Garcia MG, Carella A, Lopez V, Santamarina P, Perez RF (2018) Loss of 5hmC identifies a new type of aberrant DNA hypermethylation in glioma. Hum Mol Genet 27:3046–3059. https://doi.org/10.1093/hmg/ddy214

    Article  CAS  PubMed  Google Scholar 

  17. Shi DQ, Iftikhar A, Tang J, Yang WC (2017) New Insights into 5hmC DNA Modification: Generation, Distribution and Function. Frontiers in Genetics 8:100–107. https://doi.org/10.3389/fgene.2017.00100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sun W, Zang L, Shu Q, Li X (2014) From development to diseases: The role of 5hmC in brain. Genomics 104:347–351. https://doi.org/10.1016/j.ygeno.2014.08.021

    Article  CAS  PubMed  Google Scholar 

  19. Macke TJ, Case DA (1998) Modeling unusual nucleic acid structures. Am Chem Soc 682:379–393. https://doi.org/10.1021/bk-1998-0682.ch024

    Article  CAS  Google Scholar 

  20. Flores-Moreno R, Posada E, Moncada F, Romero J, Charry J, Diaz-Tinoco M, Gonzalez SA, Aguirre NF, Reyes A (2014) LOWDIN: The any particle molecular orbital code. Int J Quantum Chem 114:50–56. https://doi.org/10.1002/qua.24500

    Article  CAS  Google Scholar 

  21. Qi J, Edirisinghe N, Rabbani G, Anantram MP (2013) Unified model for conductance through DNA with the Landauer-Buttiker formalism. Phys Rev 8:109–115. https://doi.org/10.1103/PhysRevB.87.085404

    Article  CAS  Google Scholar 

  22. Qi J, Anantram MP (2014b) Electron Flow in GC8 DNA Strand. ECS Trans 64:1–9. https://doi.org/10.1149/06412.0001ecst

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the China Scholarship Council Study Program for Young Backbone Teachers under Grant No. 201707845017, the National Nature Science Foundation of China under Grant No. 61804020, the Scientific and Technological Research Foundation of Chongqing Municipal Education Commission under Grant No. KJQN201900643, the Raised Fund Plan of National Natural Science Foundation of China of Chongqing University of Posts and Telecommunications under Grant No. A2016-143, the PhD scientific research foundation of Chongqing University of Posts and Telecommunications under Grant Nos. A2015-11 and A2015-12, and SR Patil’s support from SERB, India under Grant No. TAR/2018/001188.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to data analysis, drafting and revising the article, gave final approval of the version to be published, and agreed to be accountable for all aspects of the work.

Corresponding author

Correspondence to Lijun He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Zhang, J., He, C. et al. Effect of cytosine hydroxymethylation on DNA charge transport. Mol Cell Biochem 476, 1599–1603 (2021). https://doi.org/10.1007/s11010-020-03957-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03957-7

Keywords

Navigation