Skip to main content
Log in

TAK1 is involved in sodium L-lactate-stimulated p38 signaling and promotes apoptosis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

A Correction to this article was published on 22 May 2021

This article has been updated

Abstract

In the present study, we found that the phosphorylation of p38 mitogen-activated protein kinase (p38) was significantly increased in L-lactate-treated HeLa cells, which is under concentration- and time-dependent manner. The protein level of Bcl-2 was significantly reduced and Bax and C-caspase3 were significantly increased in L-lactate-treated cells. qRT-PCR analysis suggested that the expression level of apoptosis-related genes Bax, C-myc, and FasL were significantly upregulated by L-lactate treatment. In addition, p38 inhibitor SB203580 blocked the L-lactate-stimulated phosphorylation of p38 (p-p38) and apoptosis, which suggested that L-lactate-stimulated apoptosis may be related to the activation of p38. Moreover, TAK1 inhibitor Takinib reduced L-lactate-triggered phosphorylation of p38 and also apoptosis; however, ASK1 inhibitor NQDI-1 did not. Cells transfected with siRNA of TAK1(siTAK1) showed similar results with Takinib inhibitor. These results suggested that the L-lactate treatment elevated activation of p38 and apoptosis was related to TAK1. In this study, we suggested that TAK1 plays an important role in L-lactate-stimulated activation of p38 affecting apoptosis in HeLa cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

Abbreviations

L-Lactate:

Sodium L-Lactate

PCD:

The programmed cell death

MAPK:

Mitogen-activated protein kinase

MAP3Ks:

MAP2K kinases

p38:

p38 mitogen-activated protein kinase

p-p38:

phosphorylated p38

ERK:

Extracellular signal-regulated kinases

JNK/SAPK:

c-jun N-terminal or stress-activated protein kinases

Bcl-2:

BCL-2 apoptosis regulator

Bcl-xl:

BCL-2 like 1

Mcl1:

Mcl1 apoptosis regulator

Bcl-B:

BCL-2 like 10

Bax:

BCL-2associated X, apoptosis regulator

Fas:

Fas cell surface death receptor

FasL:

Fas ligand

ASK1:

Apoptosis signal-regulating kinase 1

TAK1:

TGF (transforming growth factor) β-activated kinase 1

Reference

  1. Letai A (2017) Apoptosis and cancer. Ann Rev Cancer Biol 1(1):275–294. https://doi.org/10.1146/annurev-cancerbio-050216-121933

    Article  Google Scholar 

  2. Nagata S (2018) Apoptosis and clearance of apoptotic cells. Ann Rev Immunol 36(36):489–517. https://doi.org/10.1146/annurev-immunol-042617-053010

    Article  CAS  Google Scholar 

  3. Schlesinger PH, Gross A, Yin XM, Yamamoto K, Saito M, Waksman G, Korsmeyer SJ (1997) Comparison of the ion channel characteristics of proapoptotic BAX and antiapoptotic BCL-2. Proc Natl Acad Sci USA 94:11357–62. https://doi.org/10.1073/pnas.94.21.11357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gross A, Jockel J, Wei MC, Korsmeyer SJ (1998) Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J 17:3878–85. https://doi.org/10.1093/emboj/17.14.3878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15:49–63. https://doi.org/10.1038/nrm3722

    Article  CAS  PubMed  Google Scholar 

  6. Zou X, Blank M (2017) Targeting p38 MAP kinase signaling in cancer through post-translational modifications. Cancer Lett 384:19–26. https://doi.org/10.1016/j.canlet.2016.10.008

    Article  CAS  PubMed  Google Scholar 

  7. Cuadrado A, Nebreda AR (2010) Mechanisms and functions of p38 MAPK signalling. Biochem J 429:403–17. https://doi.org/10.1042/BJ20100323

    Article  CAS  PubMed  Google Scholar 

  8. Zarubin T, Han J (2005) Activation and signaling of the p38 MAP kinase pathway. Cell Res 15:11–8. https://doi.org/10.1038/sj.cr.7290257

    Article  CAS  PubMed  Google Scholar 

  9. Farley N, Pedraza-Alva G, Serrano-Gomez D, Nagaleekar V, Aronshtam A, Krahl T, Thornton T, Rincon M (2006) p38 mitogen-activated protein kinase mediates the Fas-induced mitochondrial death pathway in CD8+ T cells. Mol Cell Biol 26:2118–29. https://doi.org/10.1128/MCB.26.6.2118-2129.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. She QB, Chen N, Dong Z (2000) ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation. J Biol Chem 275:20444–9. https://doi.org/10.1074/jbc.M001020200

    Article  CAS  PubMed  Google Scholar 

  11. Iyoda K, Sasaki Y, Horimoto M, Toyama T, Yakushijin T, Sakakibara M, Takehara T, Fujimoto J, Hori M, Wands JR, Hayashi N (2003) Involvement of the p38 mitogen-activated protein kinase cascade in hepatocellular carcinoma. Cancer 97:3017–26. https://doi.org/10.1002/cncr.11425

    Article  CAS  PubMed  Google Scholar 

  12. Chang HL, Wu YC, Su JH, Yeh YT, Yuan SS (2008) Protoapigenone, a novel flavonoid, induces apoptosis in human prostate cancer cells through activation of p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase 1/2. J Pharmacol Exp Ther 325:841–9. https://doi.org/10.1124/jpet.107.135442

    Article  CAS  PubMed  Google Scholar 

  13. Cerda-Kohler H, Henriquez-Olguin C, Casas M, Jensen TE, Llanos P, Jaimovich E (2018) Lactate administration activates the ERK1/2, mTORC1, and AMPK pathways differentially according to skeletal muscle type in mouse. Physiol Rep 6:e13800. https://doi.org/10.14814/phy2.13800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ippolito L, Morandi A, Giannoni E, Chiarugi P (2019) Lactate: a metabolic driver in the tumour landscape. Trends Biochem Sci 44:153–166. https://doi.org/10.1016/j.tibs.2018.10.011

    Article  CAS  PubMed  Google Scholar 

  15. Heiden MGV, Cantley LC, Thompson CB (2009) Understanding the warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033. https://doi.org/10.1126/science.1160809

    Article  CAS  Google Scholar 

  16. Wu W, Zhang X, Hu X, Wang X, Sun L, Zheng X, Jiang L, Ni X, Xu C, Tian N, Zhu S, Xu H (2014) Lactate down-regulates matrix systhesis and promotes apoptosis and autophagy in rat nucleus pulposus cells. J Orthop Res 32:253–61. https://doi.org/10.1002/jor.22503

    Article  CAS  PubMed  Google Scholar 

  17. Xia H, Wang W, Crespo J, Kryczek I, Li W, Wei S, Bian Z, Maj T, He M, Liu RJ, He Y, Rattan R, Munkarah A, Guan JL, Zou W (2017) Suppression of FIP200 and autophagy by tumor-derived lactate promotes naive T cell apoptosis and affects tumor immunity. Sci Immunol. https://doi.org/10.1126/sciimmunol.aan4631

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jeanson Y, Ribas F, Galinier A, Arnaud E, Ducos M, Andre M, Chenouard V, Villarroya F, Casteilla L, Carriere A (2016) Lactate induces FGF21 expression in adipocytes through a p38-MAPK pathway. Biochem J 473:685–92. https://doi.org/10.1042/BJ20150808

    Article  CAS  PubMed  Google Scholar 

  19. Ghatan S, Larner S, Kinoshita Y, Hetman M, Patel L, Xia Z, Youle RJ, Morrison RS (2000) p38 MAP kinase mediates bax translocation in nitric oxide-induced apoptosis in neurons. J Cell Biol 150:335–47. https://doi.org/10.1083/jcb.150.2.335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Noguchi K, Yamana H, Kitanaka C, Mochizuki T, Kokubu A, Kuchino Y (2000) Differential role of the JNK and p38 MAPK pathway in c-Myc- and s-Myc-mediated apoptosis. Biochem Biophys Res Commun 267:221–7. https://doi.org/10.1006/bbrc.1999.1952

    Article  CAS  PubMed  Google Scholar 

  21. Deschesnes RG, Huot J, Valerie K, Landry J (2001) Involvement of p38 in apoptosis-associated membrane blebbing and nuclear condensation. Mol Biol Cell 12:1569–82. https://doi.org/10.1091/mbc.12.6.1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Raingeaud J, Whitmarsh AJ, Barrett T, Derijard B, Davis RJ (1996) MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol Cell Biol 16:1247–55. https://doi.org/10.1128/mcb.16.3.1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brancho D, Tanaka N, Jaeschke A, Ventura JJ, Kelkar N, Tanaka Y, Kyuuma M, Takeshita T, Flavell RA, Davis RJ (2003) Mechanism of p38 MAP kinase activation in vivo. Genes Dev 17:1969–78. https://doi.org/10.1101/gad.1107303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Matsukawa J, Matsuzawa A, Takeda K, Ichijo H (2004) The ASK1-MAP kinase cascades in mammalian stress response. J Biochem 136:261–5. https://doi.org/10.1093/jb/mvh134

    Article  CAS  PubMed  Google Scholar 

  25. Dolado I, Swat A, Ajenjo N, De Vita G, Cuadrado A, Nebreda AR (2007) p38alpha MAP kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell 11:191–205. https://doi.org/10.1016/j.ccr.2006.12.013

    Article  CAS  PubMed  Google Scholar 

  26. Sorrentino A, Thakur N, Grimsby S, Marcusson A, von Bulow V, Schuster N, Zhang S, Heldin CH, Landstrom M (2008) The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol 10:1199–207. https://doi.org/10.1038/ncb1780

    Article  CAS  PubMed  Google Scholar 

  27. Yamashita M, Fatyol K, Jin C, Wang X, Liu Z, Zhang YE (2008) TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta. Mol Cell 31:918–24. https://doi.org/10.1016/j.molcel.2008.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Parks SK, Mueller-Klieser W, Pouyssegur J (2020) Lactate and acidity in the cancer microenvironment. Ann Rev Cancer Biol 4(4):141–158. https://doi.org/10.1146/annurev-cancerbio-030419-033556

    Article  Google Scholar 

  29. Zheng M, Hou R, Xiao RP (2004) Acidosis-induced p38 MAPK activation and its implication in regulation of cardiac contractility. Acta Pharmacol Sin 25:1299–305

    CAS  PubMed  Google Scholar 

  30. Zheng M, Reynolds C, Jo SH, Wersto R, Han Q, Xiao RP (2005) Intracellular acidosis-activated p38 MAPK signaling and its essential role in cardiomyocyte hypoxic injury. FASEB J 19:109–11. https://doi.org/10.1096/fj.04-2607fje

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the basic and applied basic research project of Guangdong (Youth fund projects, 2019A1515110111); the science and technology development project of Guangdong (2017B090904010); the Shenzhen municipal commission of health and family planning (No. SZFZ2018071); and Chen xiaoping academician workstation of hepatobiliary surgery, Peking University shenzhen hospital, guangdong province.

Author information

Authors and Affiliations

Authors

Contributions

QD, ZH, MR, XZ, JL, and TW designed research; QD, ZY, ZL, and LH performed experiments; QD, ZH, LH, JL, and TW analyzed data; QD, ZH, MR, XZ, JL, and TW wrote and revised the manuscript; QD, ZY, ZL, and LH provided the reagents or materials and participated in experimental design.

Corresponding authors

Correspondence to Jikui Liu or Tao Wang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Da, Q., Yan, Z., Li, Z. et al. TAK1 is involved in sodium L-lactate-stimulated p38 signaling and promotes apoptosis. Mol Cell Biochem 476, 873–882 (2021). https://doi.org/10.1007/s11010-020-03952-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03952-y

Keywords

Navigation