Skip to main content

Advertisement

Log in

Methylation of RILP in lung cancer promotes tumor cell proliferation and invasion

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Rab-interacting lysosomal protein (RILP) has been suggested to perform as a tumor suppressor in breast and prostate cancer cell lines. However, its expression profile and functional role in lung cancer have never been investigated. We applied the well-established cancer genomic database-The Cancer Genome Atlas to compare the RILP expression and methylation between lung cancer tissues and normal tissues. The potential correlation of RILP with clinical characteristics of lung cancer patients (e.g., stages, smoking, TP53, and methylation) was also be explored. Our results showed that the downregulation of RILP and upregulation of RILP methylation were identified in lung cancer tissues compared to normal healthy tissues. Downregulation of RILP was positively associated with lung cancer later stage (N3), smoking history, TP53 mutation, and poor prognosis, as well as inversely correlated with DNA (cytosine-5)-methyltransferase 1 (DNMT1) expression. Demethylation treatment enhanced RILP expression in lung cancer cells, suggesting hypermethylation is responsible for RILP silencing in lung cancer. We further found that RILP depletion promoted lung cancer cell proliferation, migration, and invasion. We concluded that RILP acts as a tumor suppressor in lung cancer cells. Our results provided the theoretical basis for developing RILP-targeting or demethylating agents for lung cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lemjabbar-Alaoui H, Hassan OU, Yang YW, Buchanan P (2015) Lung cancer: biology and treatment options. Biochim Biophys Acta 1856:189–210. https://doi.org/10.1016/j.bbcan.2015.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cersosimo RJ (2002) Lung cancer: a review. Am J Health Syst Pharm 59:611–642. https://doi.org/10.1093/ajhp/59.7.611

    Article  PubMed  Google Scholar 

  3. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA (2008) Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83:584–594. https://doi.org/10.4065/83.5.584

    Article  PubMed  Google Scholar 

  4. Hammerschmidt S, Wirtz H (2009) Lung cancer: current diagnosis and treatment. Dtsch Arztebl Int 106:809–818. https://doi.org/10.3238/arztebl.2009.0809

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bareschino MA, Schettino C, Rossi A, Maione P, Sacco PC, Zeppa R, Gridelli C (2011) Treatment of advanced non small cell lung cancer. J Thorac Dis 3:122–133. https://doi.org/10.3978/j.issn.2072-1439.2010.12.08

    Article  PubMed  PubMed Central  Google Scholar 

  6. Herbst RS, Morgensztern D, Boshoff C (2018) The biology and management of non-small cell lung cancer. Nature 553:446–454. https://doi.org/10.1038/nature25183

    Article  CAS  PubMed  Google Scholar 

  7. Chen Z, Fillmore CM, Hammerman PS, Kim CF, Wong KK (2014) Non-small-cell lung cancers: a heterogeneous set of diseases. Nat Rev Cancer 14:535–546. https://doi.org/10.1038/nrc3775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cantalupo G, Alifano P, Roberti V, Bruni CB, Bucci C (2001) Rab-interacting lysosomal protein (RILP): the Rab7 effector required for transport to lysosomes. EMBO J 20:683–693. https://doi.org/10.1093/emboj/20.4.683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tong J, Tan L, Chun C, Im YJ (2019) Structural basis of human ORP1-Rab7 interaction for the late-endosome and lysosome targeting. PLoS ONE 14:e0211724. https://doi.org/10.1371/journal.pone.0211724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang T, Hong W (2006) RILP interacts with VPS22 and VPS36 of ESCRT-II and regulates their membrane recruitment. Biochem Biophys Res Commun 350:413–423. https://doi.org/10.1016/j.bbrc.2006.09.064

    Article  CAS  PubMed  Google Scholar 

  11. Tzeng HT, Wang YC (2016) Rab-mediated vesicle trafficking in cancer. J Biomed Sci 23:70. https://doi.org/10.1186/s12929-016-0287-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Witsch E, Sela M, Yarden Y (2010) Roles for growth factors in cancer progression. Physiology (Bethesda) 25:85–101. https://doi.org/10.1152/physiol.00045.2009

    Article  CAS  Google Scholar 

  13. Gopal Krishnan PD, Golden E, Woodward EA, Pavlos NJ, Blancafort P (2020) Rab GTPases: emerging oncogenes and tumor suppressive regulators for the editing of survival pathways in cancer. Cancers (Basel). https://doi.org/10.3390/cancers12020259

    Article  Google Scholar 

  14. Ioannou MS, McPherson PS (2016) Regulation of cancer cell behavior by the small GTPase Rab13. J Biol Chem 291:9929–9937. https://doi.org/10.1074/jbc.R116.715193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Z, Zhou Y, Hu X, Chen W, Lin X, Sun L, Xu X, Hong W, Wang T (2015) RILP suppresses invasion of breast cancer cells by modulating the activity of RalA through interaction with RalGDS. Cell Death Dis 6:e1923. https://doi.org/10.1038/cddis.2015.266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Margiotta A, Progida C, Bakke O, Bucci C (2017) Characterization of the role of RILP in cell migration. Eur J Histochem 61:2783. https://doi.org/10.4081/ejh.2017.2783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guerra F, Bucci C (2016) Multiple roles of the small GTPase Rab7. Cells. https://doi.org/10.3390/cells5030034

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bucci C, Thomsen P, Nicoziani P, McCarthy J, van Deurs B (2000) Rab7: a key to lysosome biogenesis. Mol Biol Cell 11:467–480. https://doi.org/10.1091/mbc.11.2.467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Romero Rosales K, Peralta ER, Guenther GG, Wong SY, Edinger AL (2009) Rab7 activation by growth factor withdrawal contributes to the induction of apoptosis. Mol Biol Cell 20:2831–2840. https://doi.org/10.1091/mbc.E08-09-0911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guerra F, Bucci C (2019) Role of the RAB7 protein in tumor progression and cisplatin chemoresistance. Cancers (Basel). https://doi.org/10.3390/cancers11081096

    Article  Google Scholar 

  21. Linder S, Scita G (2015) RABGTPases in MT1-MMP trafficking and cell invasion: physiology versus pathology. Small GTPases 6:145–152. https://doi.org/10.4161/21541248.2014.985484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Steffan JJ, Dykes SS, Coleman DT, Adams LK, Rogers D, Carroll JL, Williams BJ, Cardelli JA (2014) Supporting a role for the GTPase Rab7 in prostate cancer progression. PLoS ONE 9:e87882. https://doi.org/10.1371/journal.pone.0087882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dorayappan KDP, Wanner R, Wallbillich JJ, Saini U, Zingarelli R, Suarez AA, Cohn DE, Selvendiran K (2018) Hypoxia-induced exosomes contribute to a more aggressive and chemoresistant ovarian cancer phenotype: a novel mechanism linking STAT3/Rab proteins. Oncogene 37:3806–3821. https://doi.org/10.1038/s41388-018-0189-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Luczak MW, Jagodzinski PP (2006) The role of DNA methylation in cancer development. Folia Histochem Cytobiol 44:143–154

    CAS  PubMed  Google Scholar 

  25. Kulis M, Esteller M (2010) DNA methylation and cancer. Adv Genet 70:27–56. https://doi.org/10.1016/B978-0-12-380866-0.60002-2

    Article  PubMed  Google Scholar 

  26. Kurakawa E, Shimamoto T, Utsumi K, Hirano T, Kato H, Ohyashiki K (2001) Hypermethylation of p16(INK4a) and p15(INK4b) genes in non-small cell lung cancer. Int J Oncol 19:277–281

    CAS  PubMed  Google Scholar 

  27. Matthaios D, Balgkouranidou I, Karayiannakis A, Bolanaki H, Xenidis N, Amarantidis K, Chelis L, Romanidis K, Chatzaki A, Lianidou E, Trypsianis G, Kakolyris S (2016) Methylation status of the APC and RASSF1A promoter in cell-free circulating DNA and its prognostic role in patients with colorectal cancer. Oncol Lett 12:748–756. https://doi.org/10.3892/ol.2016.4649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yan F, Shen N, Pang J, Zhao N, Deng B, Li B, Yang Y, Yang P, Molina JR, Liu S (2017) A regulatory circuit composed of DNA methyltransferases and receptor tyrosine kinases controls lung cancer cell aggressiveness. Oncogene 36:6919–6928. https://doi.org/10.1038/onc.2017.305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lai Q, Xu YH, Chen Q, Tang L, Li AG, Zhang LF, Zhang CF, Song JF, Du ZZ (2017) The loss-of-function of DNA methyltransferase 1 by siRNA impairs the growth of non-small cell lung cancer with alleviated side effects via reactivation of RASSF1A and APC in vitro and vivo. Oncotarget 8:59301–59311. https://doi.org/10.18632/oncotarget.19573

    Article  PubMed  PubMed Central  Google Scholar 

  30. Raj K, Mufti GJ (2006) Azacytidine (Vidaza(R)) in the treatment of myelodysplastic syndromes. Ther Clin Risk Manag 2:377–388. https://doi.org/10.2147/tcrm.2006.2.4.377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mahesh S, Saxena A, Qiu X, Perez-Soler R, Zou Y (2010) Intratracheally administered 5-azacytidine is effective against orthotopic human lung cancer xenograft models and devoid of important systemic toxicity. Clin Lung Cancer 11:405–411. https://doi.org/10.3816/CLC.2010.n.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fancai Lai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

The study does not contain any experiments involving human or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Zhuo, Y., Yin, Y. et al. Methylation of RILP in lung cancer promotes tumor cell proliferation and invasion. Mol Cell Biochem 476, 853–861 (2021). https://doi.org/10.1007/s11010-020-03950-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03950-0

Keywords

Navigation