Skip to main content
Log in

Biochemical interaction of salt sensitivity: a key player for the development of essential hypertension

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Worldwide, more than 1 billion people have elevated blood pressure, with up to 45% of adults affected by the disease. In 2016 the global health study report on patients from 67 countries was released in Lancet, which identified hypertension as the world’s leading cause for death and disability-adjusted years since 1990. This paper aims to analyze the pathophysiological connection between hemodynamic inflammatory reactions through sodium balance, salt sensitivity, and potential pathophysiological reactions. Besides, we explore how sodium consumption enhances the expression of transient receptor potential channel 3 (TrpC3) mRNA and facilitates the release of calcium inside immune cell groups, together with elevated blood pressure in essential hypertensive patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. (2012) Salt restrictions. Med Lett Drugs Ther 54:13

  2. Ando K (2000) Salt sensitivity in essential hypertension. Nihon Rinsho 58(Suppl 1):698–702

    PubMed  Google Scholar 

  3. Arakawa K, Sakaki M, Sakata S, Oniki H, Tominaga M, Tsuchihashi T (2015) Variability of urinary salt excretion estimated by spot urine in treated hypertensive patients. ClinExpHypertens 37:445–448. https://doi.org/10.3109/10641963.2015.1057831

    Article  CAS  Google Scholar 

  4. Beard TC (1990) A salt-hypertension hypothesis. J CardiovascPharmacol 16(Suppl 7):S35–S38

    Google Scholar 

  5. Beevers DG (2002) The epidemiology of salt and hypertension. ClinAuton Res 12:353–357. https://doi.org/10.1007/s10286-002-0061-7

    Article  CAS  Google Scholar 

  6. Blaustein MP, Zhang J, Chen L, Hamilton BP (2006) How does salt retention raise blood pressure? Am J PhysiolRegulIntegr Comp Physiol 290:R514–R523. https://doi.org/10.1152/ajpregu.00819.2005

    Article  CAS  Google Scholar 

  7. Borah PK, Sharma M, Kalita HC, Pasha MAQ, Paine SK, Hazarika D, Bhattacharjee CK, Mahanta J (2018) Salt-sensitive phenotypes: a community-based exploratory study from northeastern India. Natl Med J India 31:140–145. https://doi.org/10.4103/0970-258x.255754

    Article  PubMed  Google Scholar 

  8. Bos WJ, Navis GJ (2016) Is a salt-restricted diet now up for discussion? Ned TijdschrGeneeskd 160:D786

    CAS  Google Scholar 

  9. Brooks VL, Haywood JR, Johnson AK (2005) Translation of salt retention to central activation of the sympathetic nervous system in hypertension. ClinExpPharmacolPhysiol 32:426–432. https://doi.org/10.1111/j.1440-1681.2005.04206.x

    Article  CAS  Google Scholar 

  10. Caudarella R, Vescini F, Rizzoli E, Francucci CM (2009) Salt intake, hypertension, and osteoporosis. J EndocrinolInvestig 32:15–20

    CAS  Google Scholar 

  11. Dua K, Sheshala R, Al-Waeli HA, Gupta G, Chellappan DK (2015) Antimicrobial efficacy of extemporaneously prepared herbal mouth-washes. Rec Pat Drug DelivFormul 9:257–261

    Google Scholar 

  12. Gupta G, Dahiya R, Singh M, Tiwari J, Sah S, Ashwathanarayana M, Krishna G, Dua K (2018) Role of liraglutide in a major complication of diabetes: a critical review of clinical studies. Bull Pharm Res 8:155–164

    Google Scholar 

  13. Chrysant GS, Bakir S, Oparil S (1999) Dietary salt reduction in hypertension—what is the evidence and why is it still controversial? ProgCardiovasc Dis 42:23–38. https://doi.org/10.1016/s0033-0620(99)70007-1

    Article  CAS  Google Scholar 

  14. de la Sierra A, Giner V, Bragulat E, Coca A (2002) Lack of correlation between two methods for the assessment of salt sensitivity in essential hypertension. J Hum Hypertens 16:255–260. https://doi.org/10.1038/sj.jhh.1001375

    Article  PubMed  Google Scholar 

  15. Dustan HP, Kirk KA (1989) Corcoran lecture: the case for or against salt in hypertension. Arthur Curtis Corcoran, MD (1909–1965). Tribute and prelude to Corcoran Lecture of 1988. Hypertension 13:696–705. https://doi.org/10.1161/01.hyp.13.6.696

    Article  CAS  PubMed  Google Scholar 

  16. Gupta G, Kazmi I, Afzal M, Rahman M, Saleem S, Ashraf MS, Khusroo MJ, Nazeer K, Ahmed S, Mujeeb M (2012) Sedative, antiepileptic and antipsychotic effects of Viscum album L. (Loranthaceae) in mice and rats. J Ethnopharmacol 141:810–816

    Article  CAS  Google Scholar 

  17. Hatware KV, Sharma S, Patil K, Rajput H, Gupta G (2020) Therapeutic role of natural agents in the management of coronary artery disease: a review. J Environ Pathol Toxicol Oncol 39:159–177

    Article  Google Scholar 

  18. Elijovich F, Laffer CL, Amador E, Gavras H, Bresnahan MR, Schiffrin EL (2001) Regulation of plasma endothelin by salt in salt-sensitive hypertension. Circulation 103:263–268. https://doi.org/10.1161/01.cir.103.2.263

    Article  CAS  PubMed  Google Scholar 

  19. Gupta G, Pathak S, Dahiya R, Awasthi R, Mishra A, Sharma RK, Agrawal M, Dua K (2019) Aqueous extract of wood ear mushroom, Auricularia polytricha (Agaricomycetes), demonstrated antiepileptic activity against seizure induced by maximal electroshock and isoniazid in experimental animals. Int J Med Mushrooms 21:29–35

    Article  Google Scholar 

  20. Kazmi I, Gupta G, Afzal M, Anwar F (2012) Anticonvulsant and depressant-like activity of ursolic acid stearoylglucoside isolated from Lantana camara L. (verbanaceae). Asian Pac J Trop Dis 2:S453–S456

    Article  CAS  Google Scholar 

  21. Ellison DH (2017) Treatment of disorders of sodium balance in chronic kidney disease. Adv Chronic Kidney Dis 24:332–341. https://doi.org/10.1053/j.ackd.2017.07.003

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ergul A (2000) Hypertension in black patients: an emerging role of the endothelin system in salt-sensitive hypertension. Hypertension 36:62–67. https://doi.org/10.1161/01.hyp.36.1.62

    Article  CAS  PubMed  Google Scholar 

  23. Espinel CH (1992) The Salt Step Test: its usage in the diagnosis of salt-sensitive hypertension and in the detection of the salt hypertension threshold. J Am CollNutr 11:526–531. https://doi.org/10.1080/07315724.1992.10718257

    Article  CAS  Google Scholar 

  24. Freis ED (1979) Salt in hypertension and the effects of diuretics. Annu Rev PharmacolToxicol 19:13–23. https://doi.org/10.1146/annurev.pa.19.040179.000305

    Article  CAS  Google Scholar 

  25. Freis ED (1992) The role of salt in hypertension. Blood Press 1:196–200. https://doi.org/10.3109/08037059209077662

    Article  CAS  PubMed  Google Scholar 

  26. Fujita M, Fujita T (2013) The role of CNS in salt-sensitive hypertension. CurrHypertens Rep 15:390–394. https://doi.org/10.1007/s11906-013-0358-z

    Article  CAS  Google Scholar 

  27. Hinge N, Pandey MM, Singhvi G, Gupta G, Mehta M, Satija S, Gulati M, Dureja H, Dua K (2020) Nanomedicine advances in cancer therapy. Advanced 3D-printed systems and nanosystems for drug delivery and tissue engineering. Elsevier, Amsterdam, pp 219–253

    Book  Google Scholar 

  28. Liu X, Sharma RK, Mishra A, Chinnaboina GK, Gupta G, Singh M (2019) Role of aqueous extract of the wood ear mushroom, Auricularia polytricha (agaricomycetes), in avoidance of haloperidol-induced catalepsy via oxidative stress in rats. Int J Med Mushrooms 21:323–330

    Article  Google Scholar 

  29. Graudal N (2016) Con: Reducing salt intake at the population level: is it really a public health priority? Nephrol Dial Transplant 31:1398–1403. https://doi.org/10.1093/ndt/gfw280

    Article  PubMed  Google Scholar 

  30. Gupta N, Jani KK, Gupta N (2011) Hypertension: salt restriction, sodium homeostasis, and other ions. Indian J Med Sci 65:121–132. https://doi.org/10.4103/0019-5359.104787

    Article  PubMed  Google Scholar 

  31. Haddy FJ (2006) Role of dietary salt in hypertension. Life Sci 79:1585–1592. https://doi.org/10.1016/j.lfs.2006.05.017

    Article  CAS  PubMed  Google Scholar 

  32. Haddy FJ, Pamnani MB (1995) Role of dietary salt in hypertension. J Am CollNutr 14:428–438. https://doi.org/10.1080/07315724.1995.10718533

    Article  CAS  Google Scholar 

  33. Hall CE, Holland OB, Hall O (1967) Benign and malignant hypertension after adrenal enucleation in the rat. Relationship to salt intake, response to hydrochlorothiazide, and similarity to essential hypertension. J Exp Med 126:35–52. https://doi.org/10.1084/jem.126.1.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Henson ZK, Fülöp T (2016) Dietary salt restriction: how much education is enough? J ClinHypertens (Greenwich) 18:383–384. https://doi.org/10.1111/jch.12767

    Article  Google Scholar 

  35. Herrera Acosta J (2001) Salt-dependent arterial hypertension. Arch CardiolMex 71(Suppl 1):S76–S80

    Google Scholar 

  36. Hu JW, Wang Y, Chu C, Mu JJ (2018) Effect of salt intervention on serum levels of fibroblast growth factor 23 (FGF23) in Chinese adults: an intervention study. Med SciMonit 24:1948–1954. https://doi.org/10.12659/msm.906489

    Article  CAS  Google Scholar 

  37. Gupta G, Pathak S, Rawat S, Mishra A, Singh Y, Mehta M, Satija S, Khurana N, Pinto TdJA, Shukla S (2020) Oxidative stress in neurology and in neurodegenerative processes. Role of oxidative stress in pathophysiology of diseases. Springer, Singapore, pp 49–65

    Book  Google Scholar 

  38. Madhu A, Gupta G, Arali B, Chellappan DK, Dua K (2017) Anti-psychotic activity of aqueous root extract of Hemidesmusindicus: a time bound study in rats. Recent Pat DelivFormul 11:36–41

    CAS  Google Scholar 

  39. Imaizumi Y, Eguchi K, Murakami T, Arakawa K, Tsuchihashi T, Kario K (2016) High salt intake is independently associated with hypertensive target organ damage. J ClinHypertens (Greenwich) 18:315–321. https://doi.org/10.1111/jch.12668

    Article  CAS  Google Scholar 

  40. Johnson C, Santos JA, McKenzie B, Thout SR, Trieu K, McLean R, Petersen KS, Campbell NRC, Webster J (2017) The Science of Salt: a regularly updated systematic review of the implementation of salt reduction interventions (September 2016–February 2017). J ClinHypertens (Greenwich) 19:928–938. https://doi.org/10.1111/jch.13099

    Article  Google Scholar 

  41. Gupta G, Verma R, David SR, Chellappan DK, Anwar F, Dua K (2014) Hepatoprotective activity of moralbosteroid, a steroidal glycoside isolated from Morus alba. Orient Pharm Exp Med 14:285–289

    Article  Google Scholar 

  42. Kantaria N, Pantsulaia I, Andronikashvili I, Simonia G (2016) Possible mechanism of development of salt sensitive essential hypertension. Georgian Med News 258:28–32

    Google Scholar 

  43. Kawano Y, Ando K, Matsuura H, Tsuchihashi T, Fujita T, Ueshima H (2007) Report of the Working Group for Dietary Salt Reduction of the Japanese Society of Hypertension: (1) rationale for salt restriction and salt-restriction target level for the management of hypertension. Hypertens Res 30:879–886. https://doi.org/10.1291/hypres.30.879

    Article  CAS  PubMed  Google Scholar 

  44. Krekels MM, de Leeuw PW (1997) Salt sensitive blood pressure and the renin–angiotensin system in hypertension. Ned TijdschrGeneeskd 141:2285–2289

    CAS  Google Scholar 

  45. Gupta G, Singh Y, Kumar Chellappan D, Dua K (2020) New emerging dermatological symptoms in coronavirus pandemic. J Cosmet Dermatol 19:2447–2448. https://doi.org/10.1111/jocd.13466

    Article  PubMed  Google Scholar 

  46. Maurya H, Dhiman S, Dua K, Gupta G (2016) Pharmacological effect of berberine chloride in propyl thiouracil induced thyroidal dysfunction—a time bound study in female rats. Recent Pat Drug DelivFormul 10:165–173

    Article  CAS  Google Scholar 

  47. Krzesinski JM, Cohen EP (2007) Salt, the kidneys, and arterial hypertension. ActaClinBelg 62:348–357. https://doi.org/10.1179/acb.2007.053

    Article  Google Scholar 

  48. Kurtz TW, DiCarlo SE, Pravenec M, Morris RC Jr (2018) The pivotal role of renal vasodysfunction in salt sensitivity and the initiation of salt-induced hypertension. CurrOpinNephrolHypertens 27:83–92. https://doi.org/10.1097/mnh.0000000000000394

    Article  CAS  Google Scholar 

  49. Laffer CL, Bolterman RJ, Romero JC, Elijovich F (2006) Effect of salt on isoprostanes in salt-sensitive essential hypertension. Hypertension 47:434–440. https://doi.org/10.1161/01.hyp.0000202480.06735.82

    Article  CAS  PubMed  Google Scholar 

  50. Luft FC (1998) Salt and hypertension at the close of the millenium. Wien KlinWochenschr 110:459–466

    CAS  Google Scholar 

  51. Manhiani MM, Quigley JE, Socha MJ, Motamed K, Imig JD (2007) IL6 suppression provides renal protection independent of blood pressure in a murine model of salt-sensitive hypertension. Kidney Blood Press Res 30:195–202. https://doi.org/10.1159/000104094

    Article  CAS  PubMed  Google Scholar 

  52. Michell AR (1978) Salt appetite, salt intake, and hypertension: a deviation of perspective. PerspectBiol Med 21:335–347. https://doi.org/10.1353/pbm.1978.0006

    Article  CAS  Google Scholar 

  53. Miyamoto K, Iwakuma M, Nakayama T (2017) Effect of genetic information regarding salt-sensitive hypertension on the intent to maintain a reduced salt diet: implications for health communication in Japan. J ClinHypertens (Greenwich) 19:270–279. https://doi.org/10.1111/jch.12897

    Article  CAS  Google Scholar 

  54. Hu Y, Xia W, Li Y, Wang Q, Lin S, Wang B, Zhou C, Cui Y, Jiang Y, Pu X, Wei X, Wu H, Zhang H, Zhu Z, Liu D, Li Z (2020) High-salt intake increases TRPC3 expression and enhances TRPC3-mediated calcium influx and systolic blood pressure in hypertensive patients. Hypertens Res 43(7):679–687. https://doi.org/10.1038/s41440-020-0409-1

    Article  CAS  PubMed  Google Scholar 

  55. Nicolaysen G, Iversen PO (2004) Salt and hypertension—100 years of unresolved issues. TidsskrNorLaegeforen 124:3191–3193

    Google Scholar 

  56. Singh Y, Gupta G, Satija S, Negi P, Chellappan DK, Dua K (2020) RAAS blockers in hypertension posing a higher risk towards the COVID‐19. Dermatol Ther. https://doi.org/10.1111/dth.13501

    Article  PubMed  PubMed Central  Google Scholar 

  57. Singhvi G, Manchanda P, Hans N, Dubey SK, Gupta G (2019) Microsponge: an emerging drug delivery strategy. Drug Dev Res 80:200–208

    Article  CAS  Google Scholar 

  58. Ohta Y, Ohta K, Ishizuka A, Hayashi S, Kishida M, Iwashima Y, Yoshihara F, Nakamura S, Kawano Y (2015) Awareness of salt restriction and actual salt intake in hypertensive patients at a hypertension clinic and general clinic. ClinExpHypertens 37:172–175. https://doi.org/10.3109/10641963.2014.933965

    Article  CAS  Google Scholar 

  59. Pao AC, Chang TI (2017) An experimentumcrucis in salt sensitivity. Am J PhysiolRenPhysiol 312:F190–F191. https://doi.org/10.1152/ajprenal.00510.2016

    Article  CAS  Google Scholar 

  60. PinjuhMarkota N, Rumboldt M, Rumboldt Z (2015) Emphasized warning reduces salt intake: a randomized controlled trial. J Am SocHypertens 9:214–220. https://doi.org/10.1016/j.jash.2014.12.022

    Article  Google Scholar 

  61. Polonia J, Monteiro J, Almeida J, Silva JA, Bertoquini S (2016) High salt intake is associated with a higher risk of cardiovascular events: a 7.2-year evaluation of a cohort of hypertensive patients. Blood Press Monit 21:301–306. https://doi.org/10.1097/mbp.0000000000000205

    Article  PubMed  Google Scholar 

  62. Radhika G, Sathya RM, Sudha V, Ganesan A, Mohan V (2007) Dietary salt intake and hypertension in an urban south Indian population—[CURES-53]. J Assoc Physicians India 55:405–411

    CAS  PubMed  Google Scholar 

  63. Raij L (1999) Nitric oxide, salt sensitivity, and cardiorenal injury in hypertension. SeminNephrol 19:296–303

    CAS  Google Scholar 

  64. Resnick LM (1994) Calciotropic hormones in salt-sensitive essential hypertension: 1,25-dihydroxyvitamin D and parathyroid hypertensive factor. J HypertensSuppl 12:S3–S9

    CAS  Google Scholar 

  65. Richardson SI, Freedman BI, Ellison DH, Rodriguez CJ (2013) Salt sensitivity: a review with a focus on non-Hispanic blacks and Hispanics. J Am SocHypertens 7:170–179. https://doi.org/10.1016/j.jash.2013.01.003

    Article  CAS  Google Scholar 

  66. Rios-Leyvraz M, Bloetzer C, Chatelan A, Bochud M, Burnier M, Santschi V, Paradis G, Tabin R, Bovet P, Chiolero A (2019) Sodium intake and blood pressure in children with clinical conditions: a systematic review with meta-analysis. J ClinHypertens (Greenwich) 21:118–126. https://doi.org/10.1111/jch.13436

    Article  CAS  Google Scholar 

  67. Rorije NMG, Rademaker E, Schrooten EM, Wouda RD, Homan Van Der Heide JJ, Van Den Born BH, Vogt L (2019) High-salt intake affects sublingual microcirculation and is linked to body weight change in healthy volunteers: a randomized cross-over trial. J Hypertens 37:1254–1261. https://doi.org/10.1097/hjh.0000000000002015

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran Kazmi.

Ethics declarations

Conflict of interest

All authors declare that they do not have any conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazmi, I., Al-Maliki, W.H., Ali, H. et al. Biochemical interaction of salt sensitivity: a key player for the development of essential hypertension. Mol Cell Biochem 476, 767–773 (2021). https://doi.org/10.1007/s11010-020-03942-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03942-0

Keywords

Navigation