Skip to main content

Advertisement

Log in

Aristocratic human papillomavirus drove cervical cancer: a study of the therapeutic potential of the combination of interferon with zinc

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

A Correction to this article was published on 23 May 2022

This article has been updated

Abstract

Human papillomavirus (HPV) infection is related to cancer growth of vaginal, cervical, vulva, penile, anogenital, and non-genital oropharyngeal sites. HPV, as a sexually transmitted virus, infects all sexes similarly but with more significant pathological risks in women. This accounts for high mortality due to late detection and poor prognosis. The initial development and eventual progress of this cancer type depend entirely on three main oncogenes E5, E6 and E7, constitutively expressed to lead to carcinogenesis. Despite an opportunity for pharmacological therapy, there is still a shortage of medical treatment that may remove HPV from infected lesions. This study offers a concise summary of the nature of the issue and the current status of work on potential lead molecules and therapeutic approaches that show the capacity of HPV therapies to counteract the roles of deregulation of E5, E6, and E7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386. https://doi.org/10.1002/ijc.29210

    Article  CAS  PubMed  Google Scholar 

  2. Parkin DM (2006) The global health burden of infection-associated cancers in the year 2002. Int J Cancer 118:3030–3044. https://doi.org/10.1002/ijc.21731

    Article  CAS  PubMed  Google Scholar 

  3. Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Benbrahim-Tallaa L, Guha N, Freeman C, Galichet L, Cogliano V (2009) A review of human carcinogens—Part B: biological agents. Lancet Oncol 10:321–322. https://doi.org/10.1016/s1470-2045(09)70096-8

    Article  PubMed  Google Scholar 

  4. Kocjan BJ, Bzhalava D, Forslund O, Dillner J, Poljak M (2015) Molecular methods for identification and characterization of novel papillomaviruses. Clin Microbiol Infect 21:808–816. https://doi.org/10.1016/j.cmi.2015.05.011

    Article  CAS  PubMed  Google Scholar 

  5. Muñoz N, Bosch FX, de Sanjosé S, Herrero R, Castellsagué X, Shah KV, Snijders PJF, Meijer CJLM (2003) Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348:518–527. https://doi.org/10.1056/NEJMoa021641

    Article  PubMed  Google Scholar 

  6. Clifford GM, Smith JS, Plummer M, Muñoz N, Franceschi S (2003) Human papillomavirus types in invasive cervical cancer worldwide: a meta-analysis. Br J Cancer 88:63–73. https://doi.org/10.1038/sj.bjc.6600688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. de Sanjosé S, Diaz M, Castellsagué X, Clifford G, Bruni L, Muñoz N, Bosch FX (2007) Worldwide prevalence and genotype distribution of cervical human papillomavirus DNA in women with normal cytology: a meta-analysis. Lancet Infect Dis 7:453–459. https://doi.org/10.1016/S1473-3099(07)70158-5

    Article  PubMed  Google Scholar 

  8. Parkin DM, Almonte M, Bruni L, Clifford G, Curado M-P, Piñeros M (2008) Burden and trends of type-specific human papillomavirus infections and related diseases in the Latin America and Caribbean region. Vaccine 26:L1–L15. https://doi.org/10.1016/j.vaccine.2008.05.043

    Article  PubMed  Google Scholar 

  9. Schiffman M, Wentzensen N (2013) Human papillomavirus infection and the multistage carcinogenesis of cervical cancer. Cancer Epidemiol Biomark Prev 22:553–560. https://doi.org/10.1158/1055-9965.Epi-12-1406

    Article  Google Scholar 

  10. Datta SD, Koutsky LA, Ratelle S, Unger ER, Shlay J, McClain T, Weaver B, Kerndt P, Zenilman J, Hagensee M, Suhr CJ, Weinstock H (2008) Human papillomavirus infection and cervical cytology in women screened for cervical cancer in the United States, 2003–2005. Ann Intern Med 148:493–500. https://doi.org/10.7326/0003-4819-148-7-200804010-00004

    Article  PubMed  Google Scholar 

  11. Dochez C, Bogers JJ, Verhelst R, Rees H (2014) HPV vaccines to prevent cervical cancer and genital warts: an update. Vaccine 32:1595–1601. https://doi.org/10.1016/j.vaccine.2013.10.081

    Article  CAS  PubMed  Google Scholar 

  12. Gupta G, Kazmi I, Afzal M, Rahman M, Saleem S, Ashraf MS, Khusroo MJ, Nazeer K, Ahmed S, Mujeeb M (2012) Sedative, antiepileptic and antipsychotic effects of Viscum album L. (Loranthaceae) in mice and rats. J Ethnopharmacol 141:810–816

    Article  CAS  PubMed  Google Scholar 

  13. Hatware KV, Sharma S, Patil K, Rajput H, Gupta G (2020) Therapeutic role of natural agents in the management of coronary artery disease: a review. J Environ Pathol Toxicol Oncol 39(2):159–177

    Article  PubMed  Google Scholar 

  14. Eck H (1965) Histologic examination of the appendix or not? Zent Chir 90:2317–2319

    CAS  Google Scholar 

  15. Jing Y, Wang T, Chen Z, Ding X, Xu J, Mu X, Cao M, Chen H (2018) Phylogeny and polymorphism in the long control regions E6, E7, and L1 of HPV Type 56 in women from southwest China. Mol Med Rep 17:7131–7141. https://doi.org/10.3892/mmr.2018.8743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Argyri E, Tsimplaki E, Daskalopoulou D, Stravopodis DJ, Kouikoglou O, Terzakis E, Panotopoulou E (2013) E6/E7 mRNA expression of high-risk HPV types in 849 Greek women. Anticancer Res 33:4007–4011

    PubMed  Google Scholar 

  17. Yamato K, Yamada T, Kizaki M, Ui-Tei K, Natori Y, Fujino M, Nishihara T, Ikeda Y, Nasu Y, Saigo K, Yoshinouchi M (2008) New highly potent and specific E6 and E7 siRNAs for treatment of HPV16 positive cervical cancer. Cancer Gene Ther 15:140–153. https://doi.org/10.1038/sj.cgt.7701118

    Article  CAS  PubMed  Google Scholar 

  18. Gupta G, Krishna G, Chellappan DK, Gubbiyappa KS, Candasamy M, Dua K (2014) Protective effect of pioglitazone, a PPARγ agonist against acetaminophen-induced hepatotoxicity in rats. Mol Cell Biochem 393:223–228

    Article  CAS  PubMed  Google Scholar 

  19. Maurya H, Dhiman S, Dua K, Gupta G (2016) Pharmacological effect of berberine chloride in propyl thiouracil induced thyroidal dysfunction—a time bound study in female rats. Recent Pat Drug Deliv Formul 10:165–173

    Article  CAS  PubMed  Google Scholar 

  20. Phelps WC, Yee CL, Munger K, Howley PM (1988) The human papillomavirus type 16 E7 gene encodes transactivation and transformation functions similar to those of adenovirus E1A. Cell 53:539–547. https://doi.org/10.1016/0092-8674(88)90570-3

    Article  CAS  PubMed  Google Scholar 

  21. McIntyre MC, Frattini MG, Grossman SR, Laimins LA (1993) Human papillomavirus type 18 E7 protein requires intact Cys-X-X-Cys motifs for zinc binding, dimerization, and transformation but not for Rb binding. J Virol 67:3142–3150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boyer SN, Wazer DE, Band V (1996) E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res 56:4620–4624

    CAS  PubMed  Google Scholar 

  23. Gupta G, Wadhwa R, Pandey P, Singh SK, Gulati M, Sajita S, Mehta M, Singh AK, Dureja H, Collet T (2020) Obesity and diabetes: pathophysiology of obesity-induced hyperglycemia and insulin resistance. In: Pathophysiology of obesity-induced health complications. Springer, Cham, pp 81–97

  24. Sharma P, Mehta M, Dhanjal DS, Kaur S, Gupta G, Singh H, Thangavelu L, Rajeshkumar S, Tambuwala M, Bakshi HA (2019) Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chemico-biol Interact 309:108720

    Article  CAS  Google Scholar 

  25. Gupta G, Sharma RK, Dahiya R, Mishra A, Tiwari J, Sharma GN, Sharma S, Dua K (2018) Aphrodisiac activity of an aqueous extract of wood ear mushroom, Auricularia polytricha (Heterobasidiomycetes), in male rats. Int J Med Mushrooms 20(1):80–88

    Article  Google Scholar 

  26. Pandey P, Satija S, Wadhwa R, Mehta M, Purohit D, Gupta G, Prasher P, Chellappan DK, Awasthi R, Dureja H (2020) Emerging trends in nanomedicine for topical delivery in skin disorders: current and translational approaches. Dermatol Ther 33(3):e13292

    Article  PubMed  Google Scholar 

  27. Thomas JT, Laimins LA (1998) Human papillomavirus oncoproteins E6 and E7 independently abrogate the mitotic spindle checkpoint. J Virol 72:1131–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chakrabarti O, Veeraraghavalu K, Tergaonkar V, Liu Y, Androphy EJ, Stanley MA, Krishna S (2004) Human papillomavirus type 16 E6 amino acid 83 variants enhance E6-mediated MAPK signaling and differentially regulate tumorigenesis by notch signaling and oncogenic Ras. J Virol 78:5934–5945. https://doi.org/10.1128/jvi.78.11.5934-5945.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou X, Munger K (2009) Expression of the human papillomavirus type 16 E7 oncoprotein induces an autophagy-related process and sensitizes normal human keratinocytes to cell death in response to growth factor deprivation. Virology 385:192–197. https://doi.org/10.1016/j.virol.2008.12.003

    Article  PubMed  Google Scholar 

  30. Spangle JM, Munger K (2013) The HPV16 E6 oncoprotein causes prolonged receptor protein tyrosine kinase signaling and enhances internalization of phosphorylated receptor species. PLoS Pathog 9:e1003237. https://doi.org/10.1371/journal.ppat.1003237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Toussaint-Smith E, Donner DB, Roman A (2004) Expression of human papillomavirus type 16 E6 and E7 oncoproteins in primary foreskin keratinocytes is sufficient to alter the expression of angiogenic factors. Oncogene 23:2988–2995. https://doi.org/10.1038/sj.onc.1207442

    Article  CAS  PubMed  Google Scholar 

  32. Aljabali AAA, Bakshi HA, Hakkim FL, Haggag YA, Al-Batanyeh KM, Al Zoubi MS, Al-Trad B, Nasef MM, Satija S, Mehta M et al (2020) Albumin nano-encapsulation of piceatannol enhances its anticancer potential in colon cancer via downregulation of nuclear p65 and HIF-1α. Cancers 12:113

    Article  CAS  Google Scholar 

  33. Gupta G, Bebawy M, Pinto TdJA, Chellappan DK, Mishra A, Dua K (2018) Role of the tristetraprolin (zinc finger protein 36 homolog) gene in cancer. Crit Rev Eukaryot Gene Expr. https://doi.org/10.1615/CritRevEukaryotGeneExpr.2018021188

    Article  PubMed  Google Scholar 

  34. Lopez-Ocejo O, Viloria-Petit A, Bequet-Romero M, Mukhopadhyay D, Rak J, Kerbel RS (2000) Oncogenes and tumor angiogenesis: the HPV-16 E6 oncoprotein activates the vascular endothelial growth factor (VEGF) gene promoter in a p53 independent manner. Oncogene 19:4611–4620. https://doi.org/10.1038/sj.onc.1203817

    Article  CAS  PubMed  Google Scholar 

  35. Qu X, Wang P, Ding D, Li L, Wang H, Ma L, Zhou X, Liu S, Lin S, Wang X, Zhang G, Liu S, Liu L, Wang J, Zhang F, Lu D, Zhu H (2013) Zinc-finger-nucleases mediate specific and efficient excision of HIV-1 proviral DNA from infected and latently infected human T cells. Nucleic Acids Res 41:7771–7782. https://doi.org/10.1093/nar/gkt571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Crusius K, Auvinen E, Alonso A (1997) Enhancement of EGF- and PMA-mediated MAP kinase activation in cells expressing the human papillomavirus type 16 E5 protein. Oncogene 15:1437–1444. https://doi.org/10.1038/sj.onc.1201312

    Article  CAS  PubMed  Google Scholar 

  37. Chen SL, Huang CH, Tsai TC, Lu KY, Tsao YP (1996) The regulation mechanism of c-jun and junB by human papillomavirus type 16 E5 oncoprotein. Arch Virol 141:791–800. https://doi.org/10.1007/bf01718155

    Article  CAS  PubMed  Google Scholar 

  38. Ashrafi GH, Haghshenas M, Marchetti B, Campo MS (2006) E5 protein of human papillomavirus 16 downregulates HLA class I and interacts with the heavy chain via its first hydrophobic domain. Int J Cancer 119:2105–2112. https://doi.org/10.1002/ijc.22089

    Article  CAS  PubMed  Google Scholar 

  39. Ronco LV, Karpova AY, Vidal M, Howley PM (1998) Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes Dev 12:2061–2072. https://doi.org/10.1101/gad.12.13.2061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gautam RK, Sharma S, Sharma K, Gupta G (2018) Evaluation of antiarthritic activity of butanol fraction of Punica granatum Linn. Rind extract against Freund’s complete adjuvant-induced arthritis in rats. J Environ Pathol Toxicol Oncol 37(1):53–62

    Article  PubMed  Google Scholar 

  41. Gupta G, Afzal M, David SR, Verma R, Candaswamy M, Anwar F (2014) Anticonvulsant activity of Morus alba and its effect on brain gamma-aminobutyric acid level in rats. Pharmacogn Res 6:188

    Article  Google Scholar 

  42. Riley RR, Duensing S, Brake T, Munger K, Lambert PF, Arbeit JM (2003) Dissection of human papillomavirus E6 and E7 function in transgenic mouse models of cervical carcinogenesis. Cancer Res 63:4862–4871

    CAS  PubMed  Google Scholar 

  43. Williams VM, Filippova M, Soto U, Duerksen-Hughes PJ (2011) HPV-DNA integration and carcinogenesis: putative roles for inflammation and oxidative stress. Future Virol 6:45–57. https://doi.org/10.2217/fvl.10.73

    Article  PubMed  PubMed Central  Google Scholar 

  44. Di Domenico F, Foppoli C, Coccia R, Perluigi M (2012) Antioxidants in cervical cancer: chemopreventive and chemotherapeutic effects of polyphenols. Biochim Biophys Acta Mol Basis Dis 1822:737–747. https://doi.org/10.1016/j.bbadis.2011.10.005

    Article  CAS  Google Scholar 

  45. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49:1603–1616. https://doi.org/10.1016/j.freeradbiomed.2010.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shim JH, Kim KH, Cho YS, Choi HS, Song EY, Myung PK, Kang JS, Suh SK, Park SN, Yoon DY (2008) Protective effect of oxidative stress in HaCaT keratinocytes expressing E7 oncogene. Amino Acids 34:135–141. https://doi.org/10.1007/s00726-007-0499-y

    Article  CAS  PubMed  Google Scholar 

  47. Liu Y-J (2005) IPC: professional Type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23:275–306. https://doi.org/10.1146/annurev.immunol.23.021704.115633

    Article  CAS  PubMed  Google Scholar 

  48. Parkin J, Cohen B (2001) An overview of the immune system. Lancet 357:1777–1789. https://doi.org/10.1016/s0140-6736(00)04904-7

    Article  CAS  PubMed  Google Scholar 

  49. Hermant P, Michiels T (2014) Interferon-λ in the context of viral infections: production, response and therapeutic implications. J Innate Immun 6:563–574. https://doi.org/10.1159/000360084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chang YE, Laimins LA (2000) Microarray analysis identifies interferon-inducible genes and Stat-1 as major transcriptional targets of human papillomavirus type 31. J Virol 74:4174–4182. https://doi.org/10.1128/jvi.74.9.4174-4182.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ahmed Z, Afzal M, Kazmi I, Gupta G, Ahmad I, Anwar F (2012) Anti-obesity potential of potash alum: pharmacological and biochemical approach. Int J Pharm Pharm Sci 4:90–93

    Google Scholar 

  52. Gupta G, Charan S (2007) Exploring the potentials of Ocimum sanctum (Shyama tulsi) as a feed supplement for its growth promoter activity in broiler chickens. Indian J Poult Sci 42:140–143

    Google Scholar 

  53. Darnell JE (1997) STATs and gene regulation. Science 277:1630–1635. https://doi.org/10.1126/science.277.5332.1630

    Article  CAS  PubMed  Google Scholar 

  54. Bornstein J, Pascal B, Zarfati D, Goldshmid N, Abramovici H (1997) Recombinant human interferon-beta for condylomata acuminata: a randomized, double-blind, placebo-controlled study of intralesional therapy. Int J STD AIDS 8:614–621. https://doi.org/10.1258/0956462971918878

    Article  CAS  PubMed  Google Scholar 

  55. zur Hausen H (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2:342–350. https://doi.org/10.1038/nrc798

    Article  CAS  PubMed  Google Scholar 

  56. Turek LP, Byrne JC, Lowy DR, Dvoretzky I, Friedman RM, Howley PM (1982) Interferon induces morphologic reversion with elimination of extrachromosomal viral genomes in bovine papillomavirus-transformed mouse cells. Proc Natl Acad Sci USA 79:7914–7918. https://doi.org/10.1073/pnas.79.24.7914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Routes JM (1992) IFN increases class I MHC antigen expression on adenovirus-infected human cells without inducing resistance to natural killer cell killing. J Immunol 149:2372–2377

    CAS  PubMed  Google Scholar 

  58. Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, Chen X, Taipale J, Hughes TR, Weirauch MT (2018) The human transcription factors. Cell 172:650–665. https://doi.org/10.1016/j.cell.2018.01.029

    Article  CAS  PubMed  Google Scholar 

  59. Overbeck S, Rink L, Haase H (2008) Modulating the immune response by oral zinc supplementation: a single approach for multiple diseases. Arch Immunol Ther Exp (Warsz) 56:15–30. https://doi.org/10.1007/s00005-008-0003-8

    Article  CAS  Google Scholar 

  60. Bozym RA, Thompson RB, Stoddard AK, Fierke CA (2006) Measuring picomolar intracellular exchangeable zinc in PC-12 cells using a ratiometric fluorescence biosensor. ACS Chem Biol 1:103–111. https://doi.org/10.1021/cb500043a

    Article  CAS  PubMed  Google Scholar 

  61. Lazarczyk M, Pons C, Mendoza JA, Cassonnet P, Jacob Y, Favre M (2008) Regulation of cellular zinc balance as a potential mechanism of EVER-mediated protection against pathogenesis by cutaneous oncogenic human papillomaviruses. J Exp Med 205:35–42. https://doi.org/10.1084/jem.20071311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim YM, Reed W, Wu W, Bromberg PA, Graves LM, Samet JM (2006) Zn2+-induced IL-8 expression involves AP-1, JNK, and ERK activities in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 290:L1028–L1035. https://doi.org/10.1152/ajplung.00479.2005

    Article  CAS  PubMed  Google Scholar 

  63. Bashyam H (2007) Block the zinc, starve the virus. J Exp Med 205:3. https://doi.org/10.1084/jem.2051iti1

    Article  Google Scholar 

  64. Schiffman M, Herrero R, Desalle R, Hildesheim A, Wacholder S, Rodriguez AC, Bratti MC, Sherman ME, Morales J, Guillen D, Alfaro M, Hutchinson M, Wright TC, Solomon D, Chen Z, Schussler J, Castle PE, Burk RD (2005) The carcinogenicity of human papillomavirus types reflects viral evolution. Virology 337:76–84. https://doi.org/10.1016/j.virol.2005.04.002

    Article  CAS  PubMed  Google Scholar 

  65. de Martel C, Plummer M, Vignat J, Franceschi S (2017) Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int J Cancer 141:664–670. https://doi.org/10.1002/ijc.30716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hoppe-Seyler K, Bossler F, Braun JA, Herrmann AL, Hoppe-Seyler F (2018) The HPV E6/E7 oncogenes: key factors for viral carcinogenesis and therapeutic targets. Trends Microbiol 26:158–168. https://doi.org/10.1016/j.tim.2017.07.007

    Article  CAS  PubMed  Google Scholar 

  67. Li S, Labrecque S, Gauzzi MC, Cuddihy AR, Wong AH, Pellegrini S, Matlashewski GJ, Koromilas AE (1999) The human papilloma virus (HPV)-18 E6 oncoprotein physically associates with Tyk2 and impairs Jak-STAT activation by interferon-alpha. Oncogene 18:5727–5737. https://doi.org/10.1038/sj.onc.1202960

    Article  CAS  PubMed  Google Scholar 

  68. Park JS, Kim EJ, Kwon HJ, Hwang ES, Namkoong SE, Um SJ (2000) Inactivation of interferon regulatory factor-1 tumor suppressor protein by HPV E7 oncoprotein. Implication for the E7-mediated immune evasion mechanism in cervical carcinogenesis. J Biol Chem 275:6764–6769. https://doi.org/10.1074/jbc.275.10.6764

    Article  CAS  PubMed  Google Scholar 

  69. Barnard P, McMillan NA (1999) The human papillomavirus E7 oncoprotein abrogates signaling mediated by interferon-alpha. Virology 259:305–313. https://doi.org/10.1006/viro.1999.9771

    Article  CAS  PubMed  Google Scholar 

  70. Longworth MS, Laimins LA (2004) Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol Mol Biol Rev 68:362–372. https://doi.org/10.1128/mmbr.68.2.362-372.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shimoda R, Achanzar WE, Qu W, Nagamine T, Takagi H, Mori M, Waalkes MP (2003) Metallothionein is a potential negative regulator of apoptosis. Toxicol Sci 73:294–300. https://doi.org/10.1093/toxsci/kfg095

    Article  CAS  PubMed  Google Scholar 

  72. Fenstermacher KJ, DeStefano JJ (2011) Mechanism of HIV reverse transcriptase inhibition by zinc: formation of a highly stable enzyme–(primer–template) complex with profoundly diminished catalytic activity. J Biol Chem 286:40433–40442. https://doi.org/10.1074/jbc.M111.289850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kim JH, Bae SN, Lee CW, Song MJ, Lee SJ, Yoon JH, Lee KH, Hur SY, Park TC, Park JS (2011) A pilot study to investigate the treatment of cervical human papillomavirus infection with zinc-citrate compound (CIZAR(R)). Gynecol Oncol 122:303–306. https://doi.org/10.1016/j.ygyno.2011.04.026

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Feng Li.

Ethics declarations

Conflicts of interest

Authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, YH., Yu, L., Liu, ZS. et al. Aristocratic human papillomavirus drove cervical cancer: a study of the therapeutic potential of the combination of interferon with zinc. Mol Cell Biochem 476, 757–765 (2021). https://doi.org/10.1007/s11010-020-03941-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03941-1

Keywords

Navigation