Skip to main content
Log in

Effects of endogenous H2S production inhibition on the homeostatic responses induced by acute high-salt diet consumption

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The gaseous modulator hydrogen sulfide (H2S) is synthesized, among other routes, by the action of cystathionine-γ-lyase (CSE) and importantly participates in body fluid homeostasis. Therefore, the present study aimed to evaluate the participation of H2S in behavioral, renal and neuroendocrine homeostatic responses triggered by the acute consumption of a high Na+ diet. After habituation, adult male Wistar rats were randomly distributed and maintained for seven days on a control [CD (0.27% of Na+)] or hypersodic diet [HD (0.81% of Na+)]. CD and HD-fed animals were treated with DL-Propargylglycine (PAG, 25 mg/kg/day, ip) or vehicle (0.9% NaCl in equivalent volume) for the same period. At the end of the experiment, animals were euthanized for blood and tissue collection. We demonstrated that a short-term increase in dietary Na+ intake, in values that mimic the variations in human consumption (two times the recommended) significantly modified hydroelectrolytic homeostasis, with repercussions in the hypothalamic-neurohypophysial system and hypothalamic–pituitary–adrenal axis function. These findings were accompanied by the development of a clear inflammatory response in renal tubular cells and microvascular components. On the other hand, the inhibition of the endogenous production of H2S by CSE provided by PAG treatment prevented the inflammation induced by HD. In the kidney, PAG treatment induced the overexpression of inducible nitric oxide synthase in animals fed with HD. Taken together, these data suggest, therefore, that HD-induced H2S production plays an important proinflammatory role in the kidney, apparently counter regulating nitric oxide actions in renal tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Sarno F, Claro RM, Levy RB, Bandoni DH, Monteiro CA (2013) Estimated sodium intake for the Brazilian population, 2008–2009. Rev Saude Publica 47(3):571–578. https://doi.org/10.1590/S0034-8910.2013047004418

    Article  PubMed  Google Scholar 

  2. WHO (2012) Guideline: Sodium intake for adults and children. World Health Organization (WHO), Geneva

    Google Scholar 

  3. Zhou X, Zhang L, Ji WJ, Yuan F, Guo ZZ, Pang B, Luo T, Liu X, Zhang WC, Jiang TM, Zhang Z, Li YM (2013) Variation in dietary salt intake induces coordinated dynamics of monocyte subsets and monocyte-platelet aggregates in humans: implications in end organ inflammation. PLoS ONE 8(4):e60332. https://doi.org/10.1371/journal.pone.0060332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. de Mecawi A (2015) Neuroendocrine Regulation of Hydromineral Homeostasis. Compr Physiol 5(3):1465–1516. https://doi.org/10.1002/cphy.c140031

    Article  Google Scholar 

  5. Gadalla MM, Snyder SH (2010) Hydrogen sulfide as a gasotransmitter. J Neurochem 113(1):14–26. https://doi.org/10.1111/j.1471-4159.2010.06580.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mancuso C, Navarra P, Preziosi P (2010) Roles of nitric oxide, carbon monoxide, and hydrogen sulfide in the regulation of the hypothalamic-pituitary-adrenal axis. J Neurochem 113(3):563–575. https://doi.org/10.1111/j.1471-4159.2010.06606.x

    Article  CAS  PubMed  Google Scholar 

  7. Zaichko NV, Melnik AV, Yoltukhivskyy MM, Olhovskiy AS, Palamarchuk IV (2014) Hydrogen sulfide: metabolism, biological and medical role. Ukr Biochem J 86(5):5–25

    Article  CAS  Google Scholar 

  8. Li L, Rose P, Moore PK (2011) Hydrogen sulfide and cell signaling. Annu Rev Pharmacol Toxicol 51:169–187. https://doi.org/10.1146/annurev-pharmtox-010510-100505

    Article  CAS  PubMed  Google Scholar 

  9. Szabó C (2007) Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 6(11):917–935

    Article  Google Scholar 

  10. Zanardo RC, Brancaleone V, Distrutti E, Fiorucci S, Cirino G, Wallace JL (2006) Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J 20(12):2118–2120

    Article  CAS  Google Scholar 

  11. Wang XH, Wang F, You SJ, Cao YJ, Cao LD, Han Q, Liu CF, Hu LF (2013) Dysregulation of cystathionine γ-lyase (CSE)/hydrogen sulfide pathway contributes to ox-LDL-induced inflammation in macrophage. Cell Signal 25(11):2255–2262. https://doi.org/10.1016/j.cellsig.2013.07.010

    Article  CAS  PubMed  Google Scholar 

  12. Bhatia M, Sidhapuriwala J, Moochhala SM, Moore PK (2005) Hydrogen sulphide is a mediator of carrageenan-induced hindpaw oedema in the rat. Br J Pharmacol 145(2):141–144. https://doi.org/10.1038/sj.bjp.0706186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Della Coletta Francescato H, Cunha FQ, Costa RS, Barbosa Júnior F, Boim MA, Arnoni CP, da Silva CG, Coimbra TM (2011) Inhibition of hydrogen sulphide formation reduces cisplatin-induced renal damage. Nephrol Dial Transplan 26(2):479–488. https://doi.org/10.1093/ndt/gfq447

    Article  CAS  Google Scholar 

  14. Bos EM, Wang R, Snijder PM, Boersema M, Damman J, Fu M, Moser J, Hillebrands JL, Ploeg RJ, Yang G, Leuvenink HG, van Goor H (2013) Cystathionine γ-lyase protects against renal ischemia/reperfusion by modulating oxidative stress. J Am Soc Nephrol 24(5):759–770. https://doi.org/10.1681/ASN.2012030268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Francescato HD, Marin EC, Cunha Fde Q, Costa RS, Silva CG, Coimbra TM (2011) Role of endogenous hydrogen sulfide on renal damage induced by adriamycin injection. Arch Toxicol 85(12):1597–1606. https://doi.org/10.1007/s00204-011-0717-y

    Article  CAS  PubMed  Google Scholar 

  16. Asimakopoulou A, Panopoulos P, Chasapis CT, Coletta C, Zhou Z, Cirino G, Giannis A, Szabo C, Spyroulias GA, Papapetropoulos A (2013) Selectivity of commonly used pharmacological inhibitors for cystathionine β synthase (CBS) and cystathionine γ lyase (CSE). Br J Pharmacol 169(4):922–932. https://doi.org/10.1111/bph.12171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang R (2012) Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 92(2):791–896. https://doi.org/10.1152/physrev.00017.2011

    Article  CAS  PubMed  Google Scholar 

  18. Reed DJ (1995) Cystathionine. Methods Enzymol 252:92–102

    Article  CAS  Google Scholar 

  19. Sun Q, Collins R, Huang S, Holmberg-Schiavone L, Anand GS, Tan CH (2009) Structural basis for the inhibition mechanism of human cystathionine gamma-lyase, an enzyme responsible for the production of H(2)S. J Biol Chem 284(5):3076–3085. https://doi.org/10.1074/jbc.M805459200

    Article  CAS  PubMed  Google Scholar 

  20. Damoiseaux JG, Döpp EA, Calame W, Chao D, MacPherson GG, Dijkstra CD (1994) Rat macrophage lysosomal membrane antigen recognized by monoclonal antibody ED1. Immunology 83(1):140–147

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Dijkstra CD, Döpp EA, Joling P, Kraal G (1985) The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3. Immunology 54(3):589–599

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Nicco C, Bankir L, Bouby N (2003) Effect of salt and water intake on epithelial sodium channel mRNA abundance in the kidney of salt-sensitive Sabra rats. Clin Exp Pharmacol Physiol 30(12):963–965

    Article  CAS  Google Scholar 

  23. Cheungpasitporn W, Erickson SB, Rule AD, Enders F, Lieske JC (2016) Short-Term Tolvaptan Increases Water Intake and Effectively Decreases Urinary Calcium Oxalate, Calcium Phosphate and Uric Acid Supersaturations. J Urol 195(5):1476–1481. https://doi.org/10.1016/j.juro.2015.11.027

    Article  CAS  PubMed  Google Scholar 

  24. Muhsin SA, Mount DB (2016) Diagnosis and treatment of hypernatremia. Best Pract Res Clin Endocrinol Metab 30(2):189–203. https://doi.org/10.1016/j.beem.2016.02.014

    Article  CAS  PubMed  Google Scholar 

  25. Soares TJ, Coimbra TM, Martins AR, Pereira AG, Carnio EC, Branco LG, Albuquerque-Araujo WI, de Nucci G, Favaretto AL, Gutkowska J, McCann SM, Antunes-Rodrigues J (1999) Atrial natriuretic peptide and oxytocin induce natriuresis by release of cGMP. Proc Natl Acad Sci U S A 96(1):278–283

    Article  CAS  Google Scholar 

  26. Wesseling S, Fledderus JO, Verhaar MC, Joles JA (2015) Beneficial effects of diminished production of hydrogen sulfide or carbon monoxide on hypertension and renal injury induced by NO withdrawal. Br J Pharmacol 172(6):1607–1619. https://doi.org/10.1111/bph.12674

    Article  CAS  PubMed  Google Scholar 

  27. Oh GS, Pae HO, Lee BS, Kim BN, Kim JM, Kim HR, Jeon SB, Jeon WK, Chae HJ, Chung HT (2006) Hydrogen sulfide inhibits nitric oxide production and nuclear factor-kappaB via heme oxygenase-1 expression in RAW2647 macrophages stimulated with lipopolysaccharide. Free Radic Biol Med 41(1):106–119

    Article  CAS  Google Scholar 

  28. Yi B, Titze J, Rykova M, Feuerecker M, Vassilieva G, Nichiporuk I, Schelling G, Morukov B, Choukèr A (2015) Effects of dietary salt levels on monocytic cells and immune responses in healthy human subjects: a longitudinal study. Transl Res 166(1):103–110. https://doi.org/10.1016/j.trsl.2014.11.007

    Article  CAS  PubMed  Google Scholar 

  29. Oosterhuis NR, Frenay AR, Wesseling S, Snijder PM, Slaats GG, Yazdani S, Fernandez BO, Feelisch M, Giles RH, Verhaar MC, Joles JA, van Goor H (2015) DL-propargylglycine reduces blood pressure and renal injury but increases kidney weight in angiotensin-II infused rats. Nitric Oxide 49:56–66. https://doi.org/10.1016/j.niox.2015.07.001

    Article  CAS  PubMed  Google Scholar 

  30. Qi YC, Chen W, Li XL, Wang YW, Xie XH (2014) H(2)S protecting against lung injury following limb ischemia-reperfusion by alleviating inflammation and water transport abnormality in rats. Biomed Environ Sci 27(6):410–418. https://doi.org/10.3967/bes2014.070

    Article  CAS  PubMed  Google Scholar 

  31. Spiller F, Orrico MI, Nascimento DC, Czaikoski PG, Souto FO, Alves-Filho JC, Freitas A, Carlos D, Montenegro MF, Neto AF, Ferreira SH, Rossi MA, Hothersall JS, Assreuy J, Cunha FQ (2010) Hydrogen sulfide improves neutrophil migration and survival in sepsis via K+ATP channel activation. Am J Respir Crit Care Med 182(3):360–368. https://doi.org/10.1164/rccm.200907-1145OC

    Article  CAS  PubMed  Google Scholar 

  32. Francescato HD, Chierice JR, Marin EC, Cunha FQ, Costa RS, Silva CG, Coimbra TM (2012) Effect of endogenous hydrogen sulfide inhibition on structural and functional renal disturbances induced by gentamicin. Braz J Med Biol Res 45(3):244–249

    Article  CAS  Google Scholar 

  33. Zhang H, Zhi L, Moochhala S, Moore PK, Bhatia M (2007) Hydrogen sulfide acts as an inflammatory mediator in cecal ligation and puncture-induced sepsis in mice by upregulating the production of cytokines and chemokines via NF-kappaB. Am J Physiol Lung Cell Mol Physiol 292(4):L960–L971

    Article  CAS  Google Scholar 

  34. Coletti R, Almeida-Pereira G, Elias LL, Antunes-Rodrigues J (2015) Effects of hydrogen sulfide (H2S) on water intake and vasopressin and oxytocin secretion induced by fluid deprivation. Horm Behav 67:12–20. https://doi.org/10.1016/j.yhbeh.2014.11.008

    Article  CAS  PubMed  Google Scholar 

  35. De Kloet ER, Derijk R (2004) Signaling pathways in brain involved in predisposition and pathogenesis of stress-related disease: genetic and kinetic factors affecting the MR/GR balance. Ann N Y Acad Sci 1032:14–34

    Article  Google Scholar 

  36. Rodriguez-Iturbe B, Romero F, Johnson RJ (2007) Pathophysiological mechanisms of salt-dependent hypertension. Am J Kidney Dis 50(4):655–672

    Article  Google Scholar 

  37. Forechi L, Baldo MP, Araujo IB, Nogueira BV, Mill JG (2015) Effects of high and low salt intake on left ventricular remodeling after myocardial infarction in normotensive rats. J Am Soc Hypertens 9(2):77–85. https://doi.org/10.1016/j.jash.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  38. El-Sayed SS, Zakaria MN, Abdel-Ghany RH, Abdel-Rahman AA (2016) Cystathionine-γ lyase-derived hydrogen sulfide mediates the cardiovascular protective effects of moxonidine in diabetic rats. Eur J Pharmacol 783:73–84. https://doi.org/10.1016/j.ejphar.2016.04.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lin Y, Chen Y, Zhu N, Zhao S, Fan J, Liu E (2016) Hydrogen sulfide inhibits development of atherosclerosis through up-regulating protein S-nitrosylation. Biomed Pharmacother 83:466–476. https://doi.org/10.1016/j.biopha.2016.07.003

    Article  CAS  PubMed  Google Scholar 

  40. Rodrigues SL, Souza Júnior PR, Pimentel EB, Baldo MP, Malta DC, Mill JG, Szwarcwald CL (2015) Relationship between salt consumption measured by 24-h urine collection and blood pressure in the adult population of Vitória (Brazil). Braz J Med Biol Res 48(8):728–735. https://doi.org/10.1590/1414-431X20154455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tsai CY, Peh MT, Feng W, Dymock BW, Moore PK (2015) Hydrogen sulfide promotes adipogenesis in 3T3L1 cells. PLoS ONE 10(3):e0119511. https://doi.org/10.1371/journal.pone.0119511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the technical support of Luis Felipe Cunha dos Reis (Department of Physiological Sciences, UNIFAL/MG) and Milene Mantovani Lopes Mata (Department of Physiology, FMRP/USP).

Funding

Coordenacao de Aperfeicoamento de Pessoal de Nível Superior (CAPES, individual grant for A. M. M.) and Fundacao de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG, research grant for S. G. R., APQ-02261–14).

Author information

Authors and Affiliations

Authors

Contributions

AMM and SAG conducted all the animal experiments and data analyses. SGR designed and supervised the experiments. HDCF, TMC, LLKE and JAR provided their expertise and carefully revised the text.

Corresponding author

Correspondence to Silvia Graciela Ruginsk.

Ethics declarations

Conflicts of interest

No conflicts to declare.

Ethical approval

All the procedures were conducted in accordance with the Guide for the Care and Use of Animals of the National Institute of Health and the ethical principles of the Brazilian Society of Sciences in Laboratory Animals (SBCAL; available at < https://www.cobea.org.br >). The present protocols were also approved by the Ethics Committee for Animal Use of the Federal University of Alfenas – UNIFAL/MG (CEUA 613/2015).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, A.M., Grisote, S.A., Francescato, H.D.C. et al. Effects of endogenous H2S production inhibition on the homeostatic responses induced by acute high-salt diet consumption. Mol Cell Biochem 476, 715–725 (2021). https://doi.org/10.1007/s11010-020-03938-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03938-w

Keywords

Navigation