Skip to main content

Advertisement

Log in

Ectopic expression of 35 kDa and knocking down of 78 kDa SG2NAs induce cytoskeletal reorganization, alter membrane sialylation, and modulate the markers of EMT

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

SG2NA is a protein of the striatin family that organizes STRIPAK complexes. It has splice variants expressing differentially in tissues. Its 78 kDa isoform regulates cell cycle, maintains homeostasis in the endoplasmic reticulum, and prevents oxidative injuries. The 35 kDa variant is devoid of the signature WD-40 repeats in the carboxy terminal, and its function is unknown. We expressed it in NIH 3T3 cells that otherwise express 78 kDa variant only. These cells (35 EE) have altered morphology, faster rate of migration, and enhanced growth as measured by the MTT assay. Similar phenotypes were also seen in cells where the endogenous 78 kDa isoform was downregulated by siRNA (78 KD). Proteomic analyses showed that several cancer-associated proteins are modulated in both 35 EE and 78 KD cells. The 35 EE cells have diffused actin fibers, distinctive ultrastructure, reduced sialylation, and increased expression of MMP2 & 9. The 78 KD cells also had diffused actin fibers and an upregulated expression of MMP2. In both cells, markers epithelial to mesenchymal transition (EMT) viz, E- & N-cadherins, β-catenin, slug, vimentin, and ZO-1 were modulated partially in tune with the EMT process. Since NIH 3T3 cells are mesenchymal, we also expressed 35 kDa SG2NA in MCF-7 cells of epithelial origin. In these cells (MCF-7-35), the actin fibers were also diffused and the modulation of the markers was more in tune with the EMT process. However, unlike in 35 EE cells, in MCF-7-35 cells, membrane sialylation rather increased. We infer that ectopic expression of 35 kDa and downregulation of 78 kDa SG2NAs partially induce transformed phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

EMT:

Epithelial to Mesenchymal Transition

ERM:

Ezrin, Radixin and Moesin

STRIPAK:

Striatin-interacting phosphatase and kinase

MST:

Mammalian STE20 like protein kinases

MEK:

Mitogen-activated protein kinase

MOB:

Mps One Binder

YAP:

Yes-associated protein

ZO-1:

Zona occludens-1

JNK:

C-Jun N-terminal Kinase

MAPK:

Mitogen-activated protein kinase

References

  1. Mugabo Y, Lim GE (2018) Scaffold proteins: from coordinating signaling pathways to metabolic regulation. Endocrinology 159:3615–3630. https://doi.org/10.1210/en.2018-00705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Carmona-Rosas G, Alcántara-Hernández R, Hernández-Espinosa DA (2018) Dissecting the signaling features of the multi-protein complex GPCR/β-arrestin/ERK1/2. Eur J Cell Biol 97:349–358. https://doi.org/10.1016/j.ejcb.2018.04.001

    Article  CAS  PubMed  Google Scholar 

  3. Shi Z, Jiao S, Zhou Z (2016) STRIPAK complexes in cell signaling and cancer. Oncogene 35:4549

    Article  CAS  PubMed  Google Scholar 

  4. Elramli N, Karahoda B, Sarikaya-Bayram Ö et al (2019) Assembly of a heptameric STRIPAK complex is required for coordination of light-dependent multicellular fungal development with secondary metabolism in Aspergillus nidulans. PLoS Genet 15:e1008053–e1008053. https://doi.org/10.1371/journal.pgen.1008053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zheng Y, Liu B, Wang L et al (2017) Homeostatic control of Hpo/MST kinase activity through autophosphorylation-dependent recruitment of the STRIPAK PP2A phosphatase complex. Cell Rep 21:3612–3623. https://doi.org/10.1016/j.celrep.2017.11.076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pal S, Lant B, Yu B et al (2017) CCM-3 promotes C. elegans germline development by regulating vesicle trafficking cytokinesis and polarity. Curr Biol 27:868–876. https://doi.org/10.1016/j.cub.2017.02.028

    Article  CAS  PubMed  Google Scholar 

  7. Ulrich K, Daria R, Ines T (2019) STRIPAK, a highly conserved signaling complex, controls multiple eukaryotic cellular and developmental processes and is linked with human diseases. Biol Chem 400:1005. https://doi.org/10.1515/hsz-2019-0173

    Article  CAS  Google Scholar 

  8. Hwang J, Pallas DC (2014) STRIPAK complexes: structure, biological function, and involvement in human diseases. Int J Biochem Cell Biol 47:118–148. https://doi.org/10.1016/j.biocel.2013.11.021

    Article  CAS  PubMed  Google Scholar 

  9. Madsen CD, Hooper S, Tozluoglu M et al (2015) STRIPAK components determine mode of cancer cell migration and metastasis. Nat Cell Biol 17:68–80. https://doi.org/10.1038/ncb3083

    Article  CAS  PubMed  Google Scholar 

  10. Lin J-L, Chen H-C, Fang H-I et al (2001) MST4, a new Ste20-related kinase that mediates cell growth and transformation via modulating ERK pathway. Oncogene 20:6559–6569. https://doi.org/10.1038/sj.onc.1204818

    Article  CAS  PubMed  Google Scholar 

  11. Lin Z-H, Wang L, Zhang J-B et al (2014) MST4 promotes hepatocellular carcinoma epithelial-mesenchymal transition and metastasis via activation of the p-ERK pathway. Int J Oncol 45:629–640. https://doi.org/10.3892/ijo.2014.2455

    Article  CAS  PubMed  Google Scholar 

  12. Chen M, Zhang H, Shi Z et al (2018) The MST4-MOB4 complex disrupts the MST1-MOB1 complex in the Hippo-YAP pathway and plays a pro-oncogenic role in pancreatic cancer. J Biol Chem 293:14455–14469. https://doi.org/10.1074/jbc.RA118.003279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fife CM, McCarroll JA, Kavallaris M (2014) Movers and shakers: cell cytoskeleton in cancer metastasis. Br J Pharmacol 171:5507–5523. https://doi.org/10.1111/bph.12704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gkretsi V, Stylianopoulos T (2018) Cell adhesion and matrix stiffness: coordinating cancer cell invasion and metastasis. Front Oncol 8:145. https://doi.org/10.3389/fonc.2018.00145

    Article  PubMed  PubMed Central  Google Scholar 

  15. MacGrath SM, Koleske AJ (2012) Cortactin in cell migration and cancer at a glance. J Cell Sci 125:1621–1626. https://doi.org/10.1242/jcs.093781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shih P-Y, Lee S-P, Chen Y-K, Hsueh Y-P (2014) Cortactin-binding protein 2 increases microtubule stability and regulates dendritic arborization. J Cell Sci 127:3521–3534. https://doi.org/10.1242/jcs.149476

    Article  CAS  PubMed  Google Scholar 

  17. Chen Y-K, Chen C-Y, Hu H-T, Hsueh Y-P (2012) CTTNBP2, but not CTTNBP2NL, regulates dendritic spinogenesis and synaptic distribution of the striatin-PP2A complex. Mol Biol Cell 23:4383–4392. https://doi.org/10.1091/mbc.E12-05-0365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jain BP, Pandey S (2018) WD40 repeat proteins: signalling scaffold with diverse functions. Protein J 37:391–406. https://doi.org/10.1007/s10930-018-9785-7

    Article  CAS  PubMed  Google Scholar 

  19. Sanghamitra M, Talukder I, Singarapu N et al (2008) WD-40 repeat protein SG2NA has multiple splice variants with tissue restricted and growth responsive properties. Gene 420:48–56. https://doi.org/10.1016/j.gene.2008.04.016

    Article  CAS  PubMed  Google Scholar 

  20. Jain BP, Chauhan P, Tanti GK et al (2015) Tissue specific expression of SG2NA is regulated by differential splicing, RNA editing and differential polyadenylation. Gene 556:119–126. https://doi.org/10.1016/j.gene.2014.11.045

    Article  CAS  PubMed  Google Scholar 

  21. Soni S, Tyagi C, Grover A, Goswami SK (2014) Molecular modeling and molecular dynamics simulations based structural analysis of the SG2NA protein variants. BMC Res Notes 7:446–446. https://doi.org/10.1186/1756-0500-7-446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Soni S, Jain BP, Gupta R et al (2018) Biophysical characterization of SG2NA variants and their interaction with DJ-1 and calmodulin in vitro. Cell Biochem Biophys 76:451–461. https://doi.org/10.1007/s12013-018-0854-5

    Article  CAS  PubMed  Google Scholar 

  23. Chauhan P, Gupta R, Jain BP et al (2020) Subcellular dynamics of variants of SG2NA in NIH3T3 fibroblasts. Cell Biol Int 44:637–650. https://doi.org/10.1002/cbin.11264

    Article  CAS  PubMed  Google Scholar 

  24. Tanti GK, Goswami SK (2014) SG2NA recruits DJ-1 and Akt into the mitochondria and membrane to protect cells from oxidative damage. Free Radic Biol Med 75:1–13. https://doi.org/10.1016/j.freeradbiomed.2014.07.009

    Article  CAS  PubMed  Google Scholar 

  25. Tanti GK, Pandey S, Goswami SK (2015) SG2NA enhances cancer cell survival by stabilizing DJ-1 and thus activating Akt. Biochem Biophys Res Commun 463:524–531. https://doi.org/10.1016/j.bbrc.2015.05.069

    Article  CAS  PubMed  Google Scholar 

  26. Jain BP, Pandey S, Saleem N et al (2017) SG2NA is a regulator of endoplasmic reticulum (ER) homeostasis as its depletion leads to ER stress. Cell Stress Chaperones 22:853–866. https://doi.org/10.1007/s12192-017-0816-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pandey S, Talukdar I, Jain BP et al (2017) GSK3β and ERK regulate the expression of 78 kDa SG2NA and ectopic modulation of its level affects phases of cell cycle. Sci Rep 7:7555–7555. https://doi.org/10.1038/s41598-017-08085-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tang Y, Chen M, Zhou L et al (2019) Architecture, substructures, and dynamic assembly of STRIPAK complexes in Hippo signaling. Cell Discov 5:3. https://doi.org/10.1038/s41421-018-0077-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Franz M, Rodriguez H, Lopes C et al (2018) GeneMANIA update 2018. Nucleic Acids Res 46:W60–W64. https://doi.org/10.1093/nar/gky311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Miller I, Min M, Yang C et al (2018) Ki67 is a graded rather than a binary marker of proliferation versus quiescence. Cell Rep 24:1105-1112.e5. https://doi.org/10.1016/j.celrep.2018.06.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liang C-C, Park AY, Guan J-L (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:329

    Article  CAS  PubMed  Google Scholar 

  32. Parker AL, Kavallaris M, McCarroll JA (2014) Microtubules and their role in cellular stress in cancer. Front Oncol 4:153. https://doi.org/10.3389/fonc.2014.00153

    Article  PubMed  PubMed Central  Google Scholar 

  33. Thibaudeau TA, Smith DM (2019) A practical review of proteasome pharmacology. Pharmacol Rev 71:170–197. https://doi.org/10.1124/pr.117.015370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moon S, Lee B-H (2018) Chemically induced cellular proteolysis: an emerging therapeutic strategy for undruggable targets. Mol Cells 41:933–942

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bear JE, Haugh JM (2014) Directed migration of mesenchymal cells: where signaling and the cytoskeleton meet. Curr Opin Cell Biol 30:74–82. https://doi.org/10.1016/j.ceb.2014.06.005

    Article  CAS  PubMed  Google Scholar 

  36. Quintero-Fabián S, Arreola R, Becerril-Villanueva E et al (2019) Role of matrix metalloproteinases in angiogenesis and cancer. Front Oncol 9:1370. https://doi.org/10.3389/fonc.2019.01370

    Article  PubMed  PubMed Central  Google Scholar 

  37. Qi Q, Obianyo O, Du Y et al (2017) Blockade of asparagine endopeptidase inhibits cancer metastasis. J Med Chem 60:7244–7255. https://doi.org/10.1021/acs.jmedchem.7b00228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Larrinaga G, Perez I, Blanco L et al (2014) Prolyl endopeptidase activity is correlated with colorectal cancer prognosis. Int J Med Sci 11:199–208. https://doi.org/10.7150/ijms.7178

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yang F, Yu N, Wang H et al (2018) Downregulated expression of hepatoma-derived growth factor inhibits migration and invasion of prostate cancer cells by suppressing epithelial-mesenchymal transition and MMP2, MMP9. PLoS ONE 13:e0190725. https://doi.org/10.1371/journal.pone.0190725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hamouda H, Kaup M, Ullah M et al (2014) Rapid analysis of cell surface N-glycosylation from living cells using mass spectrometry. J Proteome Res 13:6144–6151. https://doi.org/10.1021/pr5003005

    Article  CAS  PubMed  Google Scholar 

  41. Du J, Hong S, Dong L et al (2015) Dynamic sialylation in transforming growth factor-β (TGF-β)-induced epithelial to mesenchymal transition. J Biol Chem 290:12000–12013. https://doi.org/10.1074/jbc.M115.636969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dongre A, Weinberg RA (2019) New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 20:69–84. https://doi.org/10.1038/s41580-018-0080-4

    Article  CAS  PubMed  Google Scholar 

  43. Pastushenko I, Blanpain C (2019) EMT transition states during tumor progression and metastasis. Trends Cell Biol 29:212–226. https://doi.org/10.1016/j.tcb.2018.12.001

    Article  CAS  PubMed  Google Scholar 

  44. Pei D, Shu X, Gassama-Diagne A, Thiery JP (2019) Mesenchymal–epithelial transition in development and reprogramming. Nat Cell Biol 21:44–53. https://doi.org/10.1038/s41556-018-0195-z

    Article  CAS  PubMed  Google Scholar 

  45. Haensel D, Dai X (2018) Epithelial-to-mesenchymal transition in cutaneous wound healing: where we are and where we are heading. Dev Dyn Off Publ Am Assoc Anat 247:473–480. https://doi.org/10.1002/dvdy.24561

    Article  Google Scholar 

  46. Schaeffer D, Somarelli JA, Hanna G et al (2014) Cellular migration and invasion uncoupled: increased migration is not an inexorable consequence of epithelial-to-mesenchymal transition. Mol Cell Biol 34:3486–3499. https://doi.org/10.1128/MCB.00694-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gonzalez DM, Medici D (2014) Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal 7:8. https://doi.org/10.1126/scisignal.2005189

    Article  CAS  Google Scholar 

  48. Jeanes A, Gottardi CJ, Yap AS (2008) Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 27:6920–6929. https://doi.org/10.1038/onc.2008.343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Serrano-Gomez SJ, Maziveyi M, Alahari SK (2016) Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications. Mol Cancer 15:18–18. https://doi.org/10.1186/s12943-016-0502-x

    Article  PubMed  PubMed Central  Google Scholar 

  50. Liu Y-N, Yin JJ, Abou-Kheir W et al (2012) MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms. Oncogene 32:296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dondajewska E, Juzwa W, Mackiewicz A, Dams-Kozlowska H (2017) Heterotypic breast cancer model based on a silk fibroin scaffold to study the tumor microenvironment. Oncotarget 9:4935–4950. https://doi.org/10.18632/oncotarget.23574

    Article  PubMed  PubMed Central  Google Scholar 

  52. Werner S, Frey S, Riethdorf S et al (2013) Dual roles of the transcription factor grainyhead-like 2 (GRHL2) in breast cancer. J Biol Chem 288:22993–23008. https://doi.org/10.1074/jbc.M113.456293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rigby S, Huang Y, Streubel B et al (2009) The lymphoma-associated fusion tyrosine kinase ITK-SYK requires pleckstrin homology domain-mediated membrane localization for activation and cellular transformation. J Biol Chem 284:26871–26881. https://doi.org/10.1074/jbc.M109.034272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bednarczyk RB, Tuli NY, Hanly EK et al (2018) Macrophage inflammatory factors promote epithelial-mesenchymal transition in breast cancer. Oncotarget 9:24272–24282. https://doi.org/10.18632/oncotarget.24917

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sahu SK, Tiwari N, Pataskar A et al (2017) FBXO32 promotes microenvironment underlying epithelial-mesenchymal transition via CtBP1 during tumour metastasis and brain development. Nat Commun 8:1523–1523. https://doi.org/10.1038/s41467-017-01366-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cidado J, Wong HY, Rosen DM et al (2016) Ki-67 is required for maintenance of cancer stem cells but not cell proliferation. Oncotarget 7:6281–6293

    Article  PubMed  PubMed Central  Google Scholar 

  57. Haynes J, Srivastava J, Madson N et al (2011) Dynamic actin remodeling during epithelial-mesenchymal transition depends on increased moesin expression. Mol Biol Cell 22:4750–4764. https://doi.org/10.1091/mbc.E11-02-0119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15:178–196. https://doi.org/10.1038/nrm3758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Przybyla L, Muncie JM, Weaver VM (2016) Mechanical control of epithelial-to-mesenchymal transitions in development and cancer. Annu Rev Cell Dev Biol 32:527–554. https://doi.org/10.1146/annurev-cellbio-111315-125150

    Article  CAS  PubMed  Google Scholar 

  60. Escobar B, de Cárcer G, Fernández-Miranda G et al (2010) Brick1 is an essential regulator of actin cytoskeleton required for embryonic development and cell transformation. Cancer Res 70:9349. https://doi.org/10.1158/0008-5472.CAN-09-4491

    Article  CAS  PubMed  Google Scholar 

  61. Rao JY, Hemstreet GP 3rd, Hurst RE et al (1993) Alterations in phenotypic biochemical markers in bladder epithelium during tumorigenesis. Proc Natl Acad Sci USA 90:8287–8291. https://doi.org/10.1073/pnas.90.17.8287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rao JY, Hemstreet GP, Hurst RE et al (1991) Cellular F-actin levels as a marker for cellular transformation: correlation with bladder cancer risk. Cancer Res 51:2762–2767

    CAS  PubMed  Google Scholar 

  63. Rao JY, Hurst RE, Bales WD et al (1990) Cellular F-actin levels as a marker for cellular transformation: relationship to cell division and differentiation. Cancer Res 50:2215

    CAS  PubMed  Google Scholar 

  64. Rodrigues E, Macauley MS (2018) Hypersialylation in cancer: modulation of inflammation and therapeutic opportunities. Cancers 10:207. https://doi.org/10.3390/cancers10060207

    Article  CAS  PubMed Central  Google Scholar 

  65. Li X, Wang X, Tan Z et al (2016) Role of glycans in cancer cells undergoing epithelial-mesenchymal transition. Front Oncol 6:33–33. https://doi.org/10.3389/fonc.2016.00033

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wheelock MJ, Shintani Y, Maeda M et al (2008) Cadherin switching. J Cell Sci 121:727. https://doi.org/10.1242/jcs.000455

    Article  CAS  PubMed  Google Scholar 

  67. Derycke LDM, Bracke ME (2004) N-cadherin in the spotlight of cell-cell adhesion, differentiation, embryogenesis, invasion and signalling. Int J Dev Biol 48:463–476. https://doi.org/10.1387/ijdb.041793ld

    Article  CAS  PubMed  Google Scholar 

  68. Paredes J, Albergaria A, Oliveira JT et al (2005) P-cadherin overexpression is an indicator of clinical outcome in invasive breast carcinomas and is associated with CDH3 promoter hypomethylation. Clin Cancer Res 11:5869. https://doi.org/10.1158/1078-0432.CCR-05-0059

    Article  CAS  PubMed  Google Scholar 

  69. Wu C, Cipollone J, Maines-Bandiera S et al (2008) The morphogenic function of E-cadherin-mediated adherens junctions in epithelial ovarian carcinoma formation and progression. Differentiation 76:193–205. https://doi.org/10.1111/j.1432-0436.2007.00193.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge funding support from the Department of Biotechnology, Government of India [BT/PR22963/MED/122/76/2017] awarded to SKG.

Author information

Authors and Affiliations

Authors

Contributions

RG contributed to the Figs. 1–7 and suppl. Figure 1S, 2S, 3S; GK contributed to Bioinformatic analysis and suppl. Table 1S, 3S; BPJ contributed to suppl. Table 2S; SC contributed to Fig. 2 and SKG wrote the manuscript.

Corresponding author

Correspondence to Shyamal K. Goswami.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R., Kumar, G., Jain, B.P. et al. Ectopic expression of 35 kDa and knocking down of 78 kDa SG2NAs induce cytoskeletal reorganization, alter membrane sialylation, and modulate the markers of EMT. Mol Cell Biochem 476, 633–648 (2021). https://doi.org/10.1007/s11010-020-03932-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03932-2

Keywords

Navigation