Skip to main content
Log in

Engrafted primary type-2 astrocytes improve the recovery of the nigrostriatal pathway in a rat model of Parkinson's disease

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a disorder characterized by a progressive loss of the dopaminergic neurons in the substantia nigra and a depletion of the neurotransmitter dopamine in the striatum. Our published results indicate that fasciculation and elongation protein zeta-1 (FEZ1) plays a role in the astrocyte-mediated protection of dopamine neurons and regulation of the neuronal microenvironment during the progression of PD. In this study, we examined the effects of engrafted type-2 astrocytes (T2As) with high expression of FEZ1 on the improvement of the symptoms and functional reconstruction of PD rats. T2As were stereotactically transplanted into the striatum of rats with PD induced by 6-hydroxydopamine (6-OHDA). An examination of apomorphine (APO)-induced rotations was performed to evaluate dopamine neuron damage and motor functions. Remarkably, the grafted cells survived in the lesion environment for six weeks or longer after implantation. In addition, the transplantation of T2As decrease the average velocity and the duration time of the APO-induced rotations, and increase the actuation time, as measured in the rotation behavioural tests. In the substantia nigra, the transplantation of T2As reduced the PD-induced GFAP, TH and FEZ1 downregulation. The grafted cells exclusively migrated to other regions near the injection site in the striatum and differentiated into GFAP+ astrocytes or TH+ neurons. Furthermore, by detecting monoamine neurotransmitters through high-performance liquid chromatography, we found that the nigrostriatal pathway had been repaired to some extent. Taken together, these results suggest that engrafted T2As with high expression of FEZ1 improved the symptoms and functional reconstruction of PD rats, providing a theoretical basis for FEZ1 as a potential target and engraftment of T2As as a therapeutic strategy in the treatment of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PD:

Parkinson’s disease

FEZ1:

Fasciculation and elongation protein zeta-1

T2As:

Type-2 astrocytes

6-OHDA:

6-Hydroxydopamine

APO:

Apomorphine

DA:

Dopamine

5-HT:

5-Hydroxytryptamine

DOPAC:

Dihydroxy-phenyl acetic acid

HVA:

Homovanillic acid

O-2A:

Oligodendrocyte-type-2 astrocyte progenitor

ACSF:

Artificial cerebrospinal fluid

References

  1. Raza C, Anjum R, Shakeel NUA (2019) Parkinson’s disease: mechanisms, translational models and management strategies. Life Sci 226:77–90. https://doi.org/10.1016/j.lfs.2019.03.057

    Article  CAS  PubMed  Google Scholar 

  2. Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, Marshall FJ, Ravina BM, Schifitto G, Siderowf A, Tanner CM (2007) Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68:384–386. https://doi.org/10.1212/01.wnl.0000247740.47667.03

    Article  CAS  PubMed  Google Scholar 

  3. Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci USA 95:6469–6473. https://doi.org/10.1073/pnas.95.11.6469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bandres-Ciga S, Ruz C, Barrero FJ, Escamilla-Sevilla F, Pelegrina J, Vives F, Duran R (2017) Structural genomic variations and Parkinson’s disease. Minerva Med 108:438–447. https://doi.org/10.23736/S0026-4806.17.05246-6

    Article  PubMed  Google Scholar 

  5. Fiandaca MS, Bankiewicz KS, Federoff HJ (2012) Gene therapy for the treatment of Parkinson’s disease: the nature of the biologics expands the future indications. Pharmaceuticals 5:553–590. https://doi.org/10.3390/ph5060553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rothlind JC, York MK, Carlson K, Luo P, Marks WJ Jr, Weaver FM, Stern M, Follett K, Reda D, Group CSPS (2015) Neuropsychological changes following deep brain stimulation surgery for Parkinson’s disease: comparisons of treatment at pallidal and subthalamic targets versus best medical therapy. J Neurol Neurosurg Psychiatry 86:622–629. https://doi.org/10.1136/jnnp-2014-308119

    Article  PubMed  Google Scholar 

  7. Elkouzi A, Vedam-Mai V, Eisinger RS, Okun MS (2019) Emerging therapies in Parkinson disease—repurposed drugs and new approaches. Nat Rev Neurol 15:204–223. https://doi.org/10.1038/s41582-019-0155-7

    Article  PubMed  PubMed Central  Google Scholar 

  8. Picazio S, Ponzo V, Caltagirone C, Brusa L, Koch G (2018) Dysfunctional inhibitory control in Parkinson’s disease patients with levodopa-induced dyskinesias. J Neurol 265:2088–2096. https://doi.org/10.1007/s00415-018-8945-1

    Article  CAS  PubMed  Google Scholar 

  9. Chaudhuri KR, Rizos A, Sethi KD (2013) Motor and nonmotor complications in Parkinson’s disease: an argument for continuous drug delivery? J Neural Transm 120:1305–1320. https://doi.org/10.1007/s00702-013-0981-5

    Article  CAS  PubMed  Google Scholar 

  10. Vernon AC (2009) Mice with reduced vesicular monoamine storage content display nonmotor features of Parkinson’s disease. J Neurosci 29:12842–12844. https://doi.org/10.1523/JNEUROSCI.4156-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lelieveld IM, Muller ML, Bohnen NI, Koeppe RA, Chervin RD, Frey KA, Albin RL (2012) The role of serotonin in sleep disordered breathing associated with Parkinson disease: a correlative [11C]DASB PET imaging study. PLoS ONE 7:e40166. https://doi.org/10.1371/journal.pone.0040166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu X, Fu X, Zhai W, Xia C (2015) Behavioral evaluation and changes in levels of monoamine neurotransmitter within the nigrostriatal pathway in rat models of Parkinson’s disease. Chin J Clinicalanatomy 33:182–188

    Google Scholar 

  13. Kuroda S, Nakagawa N, Tokunaga C, Tatematsu K, Tanizawa K (1999) Mammalian homologue of the Caenorhabditis elegans UNC-76 protein involved in axonal outgrowth is a protein kinase C zeta-interacting protein. J Cell Biol 144:403–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ikuta J, Maturana A, Fujita T, Okajima T, Tatematsu K, Tanizawa K, Kuroda S (2007) Fasciculation and elongation protein zeta-1 (FEZ1) participates in the polarization of hippocampal neuron by controlling the mitochondrial motility. Biochem Biophys Res Commun 353:127–132. https://doi.org/10.1016/j.bbrc.2006.11.142

    Article  CAS  PubMed  Google Scholar 

  15. Honda A, Miyoshi K, Baba K, Taniguchi M, Koyama Y, Kuroda S, Katayama T, Tohyama M (2004) Expression of fasciculation and elongation protein zeta-1 (FEZ1) in the developing rat brain. Brain Res Mol Brain Res 122:89–92. https://doi.org/10.1016/j.molbrainres.2003.11.020

    Article  CAS  PubMed  Google Scholar 

  16. He J, Liu J, Zhang Z, Sun M, Zhu T, Xia C (2009) Expression of fasciculation and elongation protein zeta-1 (FEZ1) in cultured rat neonatal astrocytes. Mol Cell Biochem 325:159–167. https://doi.org/10.1007/s11010-009-0030-8

    Article  CAS  PubMed  Google Scholar 

  17. Jeong JY, Einhorn Z, Mercurio S, Lee S, Lau B, Mione M, Wilson SW, Guo S (2006) Neurogenin1 is a determinant of zebrafish basal forebrain dopaminergic neurons and is regulated by the conserved zinc finger protein Tof/Jezl. Proc Natl Acad Sci USA 103:5143–5148. https://doi.org/10.1073/pnas.0600337103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sakae N, Yamasaki N, Kitaichi K, Fukuda T, Yamada M, Yoshikawa H, Hiranita T, Tatsumi Y, Kira J, Yamamoto T, Miyakawa T, Nakayama KI (2008) Mice lacking the schizophrenia-associated protein FEZ1 manifest hyperactivity and enhanced responsiveness to psychostimulants. Hum Mol Genet 17:3191–3203. https://doi.org/10.1093/hmg/ddn215

    Article  CAS  PubMed  Google Scholar 

  19. Sun YY, Zhang Y, Sun XP, Liu TY, Liu ZH, Chen G, Xia CL (2014) Fasciculation and elongation protein zeta-1 (FEZ1) expression in reactive astrocytes in a rat model of Parkinson’s disease. Neuropathol Appl Neurobiol 40:164–176. https://doi.org/10.1111/nan.12077

    Article  CAS  PubMed  Google Scholar 

  20. Mena MA, de Bernardo S, Casarejos MJ, Canals S, Rodriguez-Martin E (2002) The role of astroglia on the survival of dopamine neurons. Mol Neurobiol 25:245–263. https://doi.org/10.1385/MN:25:3:245

    Article  CAS  PubMed  Google Scholar 

  21. Dervan AG, Meshul CK, Beales M, McBean GJ, Moore C, Totterdell S, Snyder AK, Meredith GE (2004) Astroglial plasticity and glutamate function in a chronic mouse model of Parkinson’s disease. Exp Neurol 190:145–156. https://doi.org/10.1016/j.expneurol.2004.07.004

    Article  CAS  PubMed  Google Scholar 

  22. Raff MCMR, Noble M (1983) A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303:390–396

    Article  CAS  PubMed  Google Scholar 

  23. Ffrench-Constant C, Raff MC (1986) The oligodendrocyte-type-2 astrocyte cell lineage is specialized for myelination. Nature 323:335–338. https://doi.org/10.1038/323335a0

    Article  CAS  PubMed  Google Scholar 

  24. Chunpeng L, Ye Z, Chun-Lin X, Hui S, Jing Z, Zhifang L (2007) The expression of nestin and SSEA-1 in the rat type-2 astrocytes. Acta Anat Sin 38:153–157

    Google Scholar 

  25. Kondo T, Raff M (2000) Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289:1754–1757

    Article  CAS  PubMed  Google Scholar 

  26. Kondo T, Raff M (2004) Chromatin remodeling and histone modification in the conversion of oligodendrocyte precursors to neural stem cells. Genes Dev 18:2963–2972. https://doi.org/10.1101/gad.309404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Paxinos GWC (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, San Diego

    Google Scholar 

  28. Gullapalli RR, Demirel MC, Butler PJ (2008) Molecular dynamics simulations of DiI-C18(3) in a DPPC lipid bilayer. Phys Chem Chem Phys 10:3548–3560. https://doi.org/10.1039/b716979e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Matsubayashi Y, Iwai L, Kawasaki H (2008) Fluorescent double-labeling with carbocyanine neuronal tracing and immunohistochemistry using a cholesterol-specific detergent digitonin. J Neurosci Methods 174:71–81. https://doi.org/10.1016/j.jneumeth.2008.07.003

    Article  CAS  PubMed  Google Scholar 

  30. Chen X, Lu M, Ma N, Yin G, Cui C, Zhao S (2016) Dynamic tracking of injected mesenchymal stem cells after myocardial infarction in rats: a serial 7T MRI study. Stem Cells Int 2016:4656539. https://doi.org/10.1155/2016/4656539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lin Z, Dodd CA, Filipov NM (2013) Short-term atrazine exposure causes behavioral deficits and disrupts monoaminergic systems in male C57BL/6 mice. Neurotoxicol Teratol 39:26–35. https://doi.org/10.1016/j.ntt.2013.06.002

    Article  CAS  PubMed  Google Scholar 

  32. Zhang W, He H, Song H, Zhao J, Li T, Wu L, Zhang X, Chen J (2016) Neuroprotective effects of salidroside in the MPTP mouse model of Parkinson’s disease: involvement of the PI3K/Akt/GSK3beta pathway. Parkinsons Dis 2016:9450137. https://doi.org/10.1155/2016/9450137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Le F, Tirolo C, Testa N, Caniglia S, Morale MC, Marchetti B (2010) Glia as a turning point in the therapeutic strategy of Parkinson’s disease. CNS Neurol Disord Drug Targets 9:349–372

    Article  Google Scholar 

  34. Grothe C, Timmer M (2007) The physiological and pharmacological role of basic fibroblast growth factor in the dopaminergic nigrostriatal system. Brain Res Rev 54:80–91. https://doi.org/10.1016/j.brainresrev.2006.12.001

    Article  CAS  PubMed  Google Scholar 

  35. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132

    Article  CAS  PubMed  Google Scholar 

  36. Saavedra A, Baltazar G, Santos P, Carvalho CM, Duarte EP (2006) Selective injury to dopaminergic neurons up-regulates GDNF in substantia nigra postnatal cell cultures: role of neuron-glia crosstalk. Neurobiol Dis 23:533–542. https://doi.org/10.1016/j.nbd.2006.04.008

    Article  CAS  PubMed  Google Scholar 

  37. Petrova PS, Raibekas A, Pevsner J, Vigo N, Anafi M, Moore MK, Peaire A, Shridhar V, Smith DI, Kelly J, Durocher Y, Commissiong JW (2004) Discovering novel phenotype-selective neurotrophic factors to treat neurodegenerative diseases. Prog Brain Res 146:168–183

    PubMed  Google Scholar 

  38. Seri B, Garcia-Verdugo JM, McEwen BS, Alvarez-Buylla A (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21:7153–7160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Honig MG, Hume RI (1986) Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures. J Cell Biol 103:171–187

    Article  CAS  PubMed  Google Scholar 

  40. Sharma G, Vijayaraghavan S (2001) Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores. Proc Natl Acad Sci USA 98:4148–4153. https://doi.org/10.1073/pnas.071540198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (81701316), by the Jiangsu Province Health Research Project (No. YG201307), and by Suzhou Science and Technology Plan (sys2018025, SYS2019025).

Author information

Authors and Affiliations

Authors

Contributions

The work was performed and accomplished by all authors. CX are the principal investigators for the project design, the interpretation of results. YS, XL, XF, YEZ, YAZ, JL and LZ performed experiments, analysed the data, made the figures and drafted the manuscript. YS, CX and XL wrote the manuscript.

Corresponding author

Correspondence to Chun-lin Xia.

Ethics declarations

Conflict of interest

All authors claim that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Lu, Xj., Fu, X. et al. Engrafted primary type-2 astrocytes improve the recovery of the nigrostriatal pathway in a rat model of Parkinson's disease. Mol Cell Biochem 476, 619–631 (2021). https://doi.org/10.1007/s11010-020-03931-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03931-3

Keyword

Navigation