Skip to main content

Advertisement

Log in

LncRNA OIP5-AS1 facilitates ox-LDL-induced endothelial cell injury through the miR-98-5p/HMGB1 axis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cerebrovascular diseases have a high mortality and disability rate in developed countries. Endothelial cell injury is the main cause of atherosclerosis and cerebrovascular disease. Long non-coding RNA (lncRNA) has been proved to participate in the progression of endothelial cell. Our study aimed to develop the function of lncRNA opa-interacting protein 5 antisense RNA 1 (OIP5-AS1) in oxidative low-density lipoprotein (ox-LDL)-induced endothelial cell injury. The expression of OIP5-AS1, miR-98-5p and High-mobility group protein box-1 (HMGB1) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay and flow cytometry were used to detect the cell proliferation and apoptosis. The levels of cyclinD1, Bcl-2 Associated X Protein (Bax), Cleaved-caspase-3, Toll like receptors 4 (TLR4), phosphorylation of p65 (p-P65), phosphorylation of nuclear factor-kappa B inhibitor α (p-IκB-α) and HMGB1 were measured by Western blot. The concentrations of Interleukin-6 (IL-6), Interleukin-1β (IL-1β) and Tumor necrosis factor-α (TNF-α) were detected by Enzyme-linked immunosorbent assay (ELISA). The production of Reactive oxygen species (ROS), Superoxide Dismutase (SOD) and malondialdehyde (MDA) was detected by the corresponding kit. The targets of OIP5-AS and miR-98-5p were predicted by starBase 3.0 and TargetScan and confirmed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. The expression of OIP5-AS1 was upregulated, while miR-98-5p was downregulated in ox-LDL-induced human umbilical vein endothelial cells (HUVECs). Functionally, knockdown of OIP5-AS1 induced proliferation and inhibited apoptosis, inflammatory injury and oxidative stress injury in ox-LDL-induced HUVEC cells. Interestingly, miR-98-5p was a target of OIP5-AS1 and miR-98-5p inhibition abolished the effects of OIP5-AS1 downregulation on ox-LDL-induced HUVECs injury. More importantly, miR-98-5p directly targeted HMGB1, and OIP5-AS1 regulated the expression of HMGB1 by sponging miR-98-5p. Finally, OIP5-AS1 regulated the TLR4/nuclear factor-kappa B (NF-κB) signaling pathway through miR-98-5p/HMGB1 axis. LncRNA OIP5-AS1 accelerates ox-LDL-induced endothelial cell injury through regulating HMGB1 mediated by miR-98-5p via the TLR4/NF-κB signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Santulli G (2013) Epidemiology of cardiovascular disease in the 21st century: updated numbers and updated facts. J Cardiovasc Dis Res 1:1–2

    Google Scholar 

  2. Koton S, Schneider AL, Rosamond WD, Shahar E, Sang Y, Gottesman RF, Coresh J (2014) Stroke incidence and mortality trends in US communities, 1987 to 2011. JAMA 312:259–268. https://doi.org/10.1001/jama.2014.7692

    Article  CAS  PubMed  Google Scholar 

  3. Della-Morte D, Pacifici F, Rundek T (2016) Genetic susceptibility to cerebrovascular disease. Curr Opin Lipidol 27:187–195. https://doi.org/10.1097/MOL.0000000000000275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Inaba Y, Chen JA, Bergmann SR (2012) Carotid plaque, compared with carotid intima-media thickness, more accurately predicts coronary artery disease events: a meta-analysis. Atherosclerosis 220:128–133. https://doi.org/10.1016/j.atherosclerosis.2011.06.044

    Article  CAS  PubMed  Google Scholar 

  5. Fujihara K, Suzuki H, Sato A, Ishizu T, Kodama S, Heianza Y, Saito K, Iwasaki H, Kobayashi K, Yatoh S, Takahashi A, Yahagi N, Sone H, Shimano H (2014) Comparison of the framingham risk score, UK Prospective Diabetes Study (UKPDS) risk engine, Japanese atherosclerosis longitudinal study-existing cohorts combine (JALS-ECC) and maximum carotid intima-media thickness for predicting coronary artery stenosis in patients with asymptomatic type 2 diabetes. J Atheroscler Thromb 21:799–815. https://doi.org/10.5551/jat.20487

    Article  CAS  PubMed  Google Scholar 

  6. Forstermann U, Xia N, Li H (2017) Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res 120:713–735. https://doi.org/10.1161/CIRCRESAHA.116.309326

    Article  CAS  PubMed  Google Scholar 

  7. Di X, Tang X, Di X (2017) Montelukast inhibits oxidized low-density lipoproteins (ox-LDL) induced vascular endothelial attachment: an implication for the treatment of atherosclerosis. Biochem Biophys Res Commun 486:58–62. https://doi.org/10.1016/j.bbrc.2017.02.125

    Article  CAS  PubMed  Google Scholar 

  8. Chen G, Wang Z, Wang D, Qiu C, Liu M, Chen X, Zhang Q, Yan G, Cui Q (2013) LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res 41:D983–986. https://doi.org/10.1093/nar/gks1099

    Article  CAS  PubMed  Google Scholar 

  9. Li Y, Han X, Feng H, Han J (2019) Long noncoding RNA OIP5-AS1 in cancer. Clin Chim Acta 499:75–80. https://doi.org/10.1016/j.cca.2019.08.031

    Article  CAS  PubMed  Google Scholar 

  10. Wang M, Liu Y, Li C, Zhang Y, Zhou X, Lu C (2019) Long noncoding RNA OIP5-AS1 accelerates the ox-LDL mediated vascular endothelial cells apoptosis through targeting GSK-3beta via recruiting EZH2. Am J Transl Res 11:1827–1834

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hua Y, Duan S, Murmann AE, Larsen N, Kjems J, Lund AH, Peter ME (2011) miRConnect: identifying effector genes of miRNAs and miRNA families in cancer cells. PLoS ONE 6:e26521. https://doi.org/10.1371/journal.pone.0026521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ballantyne MD, McDonald RA, Baker AH (2016) lncRNA/MicroRNA interactions in the vasculature. Clin Pharmacol Ther 99:494–501. https://doi.org/10.1002/cpt.355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guo Z, He C, Yang F, Qin L, Lu X, Wu J (2019) Long non-coding RNA-NEAT1, a sponge for miR-98-5p, promotes expression of oncogene HMGA2 in prostate cancer. Biosci Rep. https://doi.org/10.1042/BSR20190635

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen Z, Wang M, He Q, Li Z, Zhao Y, Wang W, Ma J, Li Y, Chang G (2017) MicroRNA-98 rescues proliferation and alleviates ox-LDL-induced apoptosis in HUVECs by targeting LOX-1. Exp Ther Med 13:1702–1710. https://doi.org/10.3892/etm.2017.4171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yan S, Fang C, Cao L, Wang L, Du J, Sun Y, Tong X, Lu Y, Wu X (2019) Protective effect of glycyrrhizic acid on cerebral ischemia/reperfusion (I/R) injury via inhibiting HMGB1 mediated TLR4/NF-kappaB pathway. Biotechnol Appl Biochem. https://doi.org/10.1002/bab.1825

    Article  PubMed  Google Scholar 

  16. Zhu X, Zhang H, Shang F, Zang K, Zhang X (2019) Effect of intensive insulin therapy on high mobility group box-1/nuclear factor-KappaB pathway in severe traumatic brain injury patient with stress hyperglycemia. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 31:949–952. https://doi.org/10.3760/cma.j.issn.2095-4352.2019.08.007

    Article  PubMed  Google Scholar 

  17. Wu CY, Zhou ZF, Wang B, Ke ZP, Ge ZC, Zhang XJ (2018) MicroRNA-328 ameliorates oxidized low-density lipoprotein-induced endothelial cells injury through targeting HMGB1 in atherosclerosis. J Cell Biochem. https://doi.org/10.1002/jcb.27469

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang J, Zhao T, Tian L, Li Y (2019) LncRNA OIP5-AS1 promotes the proliferation of hemangioma vascular endothelial cells via regulating miR-195-5p/NOB1 axis. Front Pharmacol 10:449. https://doi.org/10.3389/fphar.2019.00449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li R, Teng X, Zhu H, Han T, Liu Q (2019) MiR-4500 regulates PLXNC1 and inhibits papillary thyroid cancer progression. Horm Cancer. https://doi.org/10.1007/s12672-019-00366-1

    Article  PubMed  PubMed Central  Google Scholar 

  20. Huan CC, Wang HX, Sheng XX, Wang R, Wang X, Liao Y, Liu QF, Tong GZ, Ding C, Fan HJ, Wu JQ, Mao X (2016) Porcine epidemic diarrhea virus nucleoprotein contributes to HMGB1 transcription and release by interacting with C/EBP-beta. Oncotarget 7:75064–75080. https://doi.org/10.18632/oncotarget.11991

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wan CX, Xu M, Huang SH, Wu QQ, Yuan Y, Deng W, Tang QZ (2018) Baicalein protects against endothelial cell injury by inhibiting the TLR4/NF-κB signaling pathway. Mol Med Rep 17:3085–3091. https://doi.org/10.3892/mmr.2017.8266

    Article  CAS  PubMed  Google Scholar 

  22. Meng L, Li L, Lu S, Li K, Su Z, Wang Y, Fan X, Li X, Zhao G (2018) The protective effect of dexmedetomidine on LPS-induced acute lung injury through the HMGB1-mediated TLR4/NF-κB and PI3K/Akt/mTOR pathways. Mol Immunol 94:7–17. https://doi.org/10.1016/j.molimm.2017.12.008

    Article  CAS  PubMed  Google Scholar 

  23. Yang G, Wang Y, Zeng Y, Gao GF, Liang X, Zhou M, Wan X, Yu S, Jiang Y, Naghavi M, Vos T, Wang H, Lopez AD, Murray CJ (2013) Rapid health transition in China, 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet 381:1987–2015. https://doi.org/10.1016/S0140-6736(13)61097-1

    Article  PubMed  PubMed Central  Google Scholar 

  24. Forstermann U (2008) Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nat Clin Pract Cardiovasc Med 5:338–349. https://doi.org/10.1038/ncpcardio1211

    Article  CAS  PubMed  Google Scholar 

  25. Zhang M, Wang X, Yao J, Qiu Z (2019) Long non-coding RNA NEAT1 inhibits oxidative stress-induced vascular endothelial cell injury by activating the miR-181d-5p/CDKN3 axis. Artif Cells Nanomed Biotechnol 47:3129–3137. https://doi.org/10.1080/21691401.2019.1646264

    Article  CAS  PubMed  Google Scholar 

  26. Cao L, Zhang Z, Li Y, Zhao P, Chen Y (2019) LncRNA H19/miR-let-7 axis participates in the regulation of ox-LDL-induced endothelial cell injury via targeting periostin. Int Immunopharmacol 72:496–503. https://doi.org/10.1016/j.intimp.2019.04.042

    Article  CAS  PubMed  Google Scholar 

  27. Chen L, Zhou Y, Li H (2018) LncRNA, miRNA and lncRNA-miRNA interaction in viral infection. Virus Res 257:25–32. https://doi.org/10.1016/j.virusres.2018.08.018

    Article  CAS  PubMed  Google Scholar 

  28. Zheng D, Wang B, Zhu X, Hu J, Sun J, Xuan J, Ge Z (2019) LncRNA OIP5-AS1 inhibits osteoblast differentiation of valve interstitial cells via miR-137/TWIST11 axis. Biochem Biophys Res Commun 511:826–832. https://doi.org/10.1016/j.bbrc.2019.02.109

    Article  CAS  PubMed  Google Scholar 

  29. Zhou Z, Chen Y, Zhang D, Wu S, Liu T, Cai G, Qin S (2019) MicroRNA-30-3p suppresses inflammatory factor-induced endothelial cell injury by targeting TCF21. Mediators Inflamm 2019:1342190. https://doi.org/10.1155/2019/1342190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Qu Y, Zhan Y, Yang S, Ren S, Qiu X, Rehamn ZU, Tan L, Sun Y, Meng C, Song C, Yu S, Ding C (2018) Newcastle disease virus infection triggers HMGB1 release to promote the inflammatory response. Virology 525:19–31. https://doi.org/10.1016/j.virol.2018.09.001

    Article  CAS  PubMed  Google Scholar 

  31. Huebener P, Gwak GY, Schwabe RF (2015) Comment on: HMGB1-dependent and -independent autophagy. Autophagy 11:1187–1188. https://doi.org/10.1080/15548627.2015.1054593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang YL, Liu M, Cheng X, Li WH, Zhang SS, Wang YH, Du GH (2019) Myricitrin blocks activation of NF-kappaB and MAPK signaling pathways to protect nigrostriatum neuron in LPS-stimulated mice. J Neuroimmunol 337:577049. https://doi.org/10.1016/j.jneuroim.2019.577049

    Article  CAS  PubMed  Google Scholar 

  33. Jiang H, Duan J, Xu K, Zhang W (2019) Resveratrol protects against asthma-induced airway inflammation and remodeling by inhibiting the HMGB1/TLR4/NF-kappaB pathway. Exp Ther Med 18:459–466. https://doi.org/10.3892/etm.2019.7594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Michel HE, Menze ET (2019) Tetramethylpyrazine guards against cisplatin-induced nephrotoxicity in rats through inhibiting HMGB1/TLR4/NF-kappaB and activating Nrf2 and PPAR-gamma signaling pathways. Eur J Pharmacol 857:172422. https://doi.org/10.1016/j.ejphar.2019.172422

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianxiao Li.

Ethics declarations

Conflict of interest

The authors have no interests to disclose.

Ethical approval

All authors have read the Journal’s position on issues involved in ethical publication, and all authors have approved the final version of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Zhang, G., Liang, X. et al. LncRNA OIP5-AS1 facilitates ox-LDL-induced endothelial cell injury through the miR-98-5p/HMGB1 axis. Mol Cell Biochem 476, 443–455 (2021). https://doi.org/10.1007/s11010-020-03921-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03921-5

Keywords

Navigation