Skip to main content

Maternal cholesterol levels during gestation: boon or bane for the offspring?

Abstract

An increase in cholesterol levels is perceived during pregnancy and is considered as a normal adaptive response to the development of the fetus. In some pregnancies, excessive increase in total cholesterol with high levels of Low-Density Lipoprotein leads to maladaptation by the fetus to cholesterol demands, resulting in a pathological condition termed as maternal hypercholesterolemia (MH). MH is considered clinically irrelevant and therefore cholesterol levels are not routinely checked during pregnancy, as a consequence of which there is scarce information on its global prevalence in pregnant women. Studies have reported that MH during pregnancy can cause atherogenesis in adults emphasizing the concept of in utero programming of fetus. Moreover, Gestational Diabetes Mellitus, obesity and Polycystic Ovary Syndrome are potential risk factors which strengthen combined pathologies in placenta and fetuses of mothers with MH. However, lack of conclusive evidence on cholesterol transport and underlying programming demand substantial research to develop population-based life style strategies for women in their childbearing years. The current review focuses on the mechanisms and outcomes of MH from existing epidemiological as well as experimental data and presents a detailed insight on this novel risk factor of cardiovascular diseases.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Roth GA, Abate D, Abate KH et al (2018) Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392:1736–1788. https://doi.org/10.1016/S0140-6736(18)32203-7

    Article  Google Scholar 

  2. Napoli C, D’Armiento FP, Mancini FP et al (1997) Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. J Clin Invest 100:2680–2690. https://doi.org/10.1172/JCI119813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Palinski W, Napoli C (2002) The fetal origins of atherosclerosis: maternal hypercholesterolemia, and cholesterol-lowering or antioxidant treatment during pregnancy influence in utero programming and postnatal susceptibility to atherogenesis. FASEB J 16:1348–1360. https://doi.org/10.1096/fj.02-0226rev

    Article  CAS  PubMed  Google Scholar 

  4. Palinski W, Nicolaides E, Liguori A, Napoli C (2009) Influence of maternal dysmetabolic conditions during pregnancy on cardiovascular disease. J Cardiovasc Transl Res 2:277–285. https://doi.org/10.1007/s12265-009-9108-7

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gunderson EP, Quesenberry CP, Ning X et al (2015) Lactation duration and midlife atherosclerosis. Obstet Gynecol 126:381–390. https://doi.org/10.1097/AOG.0000000000000919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bartels Ä, O’Donoghue K (2011) Cholesterol in pregnancy: a review of knowns and unknowns. Obstet Med 4:147–151. https://doi.org/10.1258/om.2011.110003

    Article  PubMed  PubMed Central  Google Scholar 

  7. Butte NF (1256S) Carbohydrate and lipid metabolism in pregnancy: normal compared with gestational diabetes mellitus. Am J Clin Nutr 71:1256S–S1261. https://doi.org/10.1093/ajcn/71.5.1256s

    Article  CAS  PubMed  Google Scholar 

  8. Bouret SG (2009) Early life origins of obesity: role of hypothalamic programming. J Pediatr Gastroenterol Nutr 48:S31–S38. https://doi.org/10.1097/MPG.0b013e3181977375

    Article  PubMed  Google Scholar 

  9. Heerwagen MJR, Miller MR, Barbour LA, Friedman JE (2010) Maternal obesity and fetal metabolic programming: a fertile epigenetic soil. Am J Physiol Regul Integr Comp Physiol 299:R711–R722. https://doi.org/10.1152/ajpregu.00310.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hibbeln JR, Davis JM, Steer C et al (2007) Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): an observational cohort study. Lancet 369:578–585

    Article  PubMed  Google Scholar 

  11. Chiang AN, Yang ML, Hung JH et al (1995) Alterations of serum lipid levels and their biological relevances during and after pregnancy. Life Sci 56:2367–2375. https://doi.org/10.1016/0024-3205(95)00230-4

    Article  CAS  PubMed  Google Scholar 

  12. Adverse Birth Outcome Among Mothers With Low Serum Cholesterol. American Academy of Pediatrics. Available from https://pediatrics.aappublications.org/content/120/4/723?download=true. Accessed 9 Jul 2020

  13. Brizzi P, Tonolo G, Esposito F et al (1999) Lipoprotein metabolism during normal pregnancy. Am J Obstet Gynecol 181:430–434. https://doi.org/10.1016/s0002-9378(99)70574-0

    Article  CAS  PubMed  Google Scholar 

  14. Kabaran S, Besler HT (2015) Do fatty acids affect fetal programming? J Health Popul Nutr 33:14. https://doi.org/10.1186/s41043-015-0018-9

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tian C, Fan C, Liu X et al (2011) Brain histological changes in young mice submitted to diets with different ratios of n-6/n-3 polyunsaturated fatty acids during maternal pregnancy and lactation. Clin Nutr 30:659–667. https://doi.org/10.1016/j.clnu.2011.03.002

    Article  CAS  PubMed  Google Scholar 

  16. Vickers MH, Breier BH, Cutfield WS et al (2000) Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am J Physiol Endocrinol Metab 279:E83–87. https://doi.org/10.1152/ajpendo.2000.279.1.E83

    Article  CAS  PubMed  Google Scholar 

  17. Nagano N, Okada T, Yonezawa R et al (2012) Early postnatal changes of lipoprotein subclass profile in late preterm infants. Clin Chim Acta 413:109–112. https://doi.org/10.1016/j.cca.2011.09.010

    Article  CAS  PubMed  Google Scholar 

  18. Woollett LA, Heubi JE (2000) Fetal and neonatal cholesterol metabolism. In: Feingold KR, Anawalt B, Boyce A, et al. (eds) Endotext. MDTextcom Inc, South Dartmouth

    Google Scholar 

  19. Gozlan O, Gross D, Gruener N (1994) Lipoprotein levels in newborns and adolescents. Clin Biochem 27:305–306. https://doi.org/10.1016/0009-9120(94)90033-7

    Article  CAS  PubMed  Google Scholar 

  20. Vuorio AF, Miettinen TA, Turtola H et al (2002) Cholesterol metabolism in normal and heterozygous familial hypercholesterolemic newborns. J Lab Clin Med 140:35–42. https://doi.org/10.1067/mlc.2002.125214

    Article  CAS  PubMed  Google Scholar 

  21. Castelli WP, Garrison RJ, Wilson PW et al (1986) Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham Study. JAMA 256:2835–2838

    Article  CAS  PubMed  Google Scholar 

  22. Stamler J, Wentworth D, Neaton JD (1986) Is relationship between serum cholesterol and risk of premature death from coronary heart disease continuous and graded? Findings in 356,222 primary screenees of the Multiple Risk Factor Intervention Trial (MRFIT). JAMA 256:2823–2828

    Article  CAS  PubMed  Google Scholar 

  23. Kannel WB, Castelli WP, Gordon T, McNamara PM (1971) Serum cholesterol, lipoproteins, and the risk of coronary heart disease. The Framingham study. Ann Intern Med 74:1–12. https://doi.org/10.7326/0003-4819-74-1-1

    Article  CAS  PubMed  Google Scholar 

  24. Sniderman AD, Tremblay A, De Graaf J, Couture P (2012) Phenotypes of hypertriglyceridemia caused by excess very-low-density lipoprotein. J Clin Lipidol 6:427–433. https://doi.org/10.1016/j.jacl.2012.04.081

    Article  PubMed  Google Scholar 

  25. Sniderman AD, Williams K, Contois JH et al (2011) A meta-analysis of low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and apolipoprotein B as markers of cardiovascular risk. Circ Cardiovasc Qual Outcomes 4:337–345. https://doi.org/10.1161/CIRCOUTCOMES.110.959247

    Article  PubMed  Google Scholar 

  26. Tsimikas S (2017) A test in context: lipoprotein(a): diagnosis, prognosis, controversies, and emerging therapies. J Am Coll Cardiol 69:692–711. https://doi.org/10.1016/j.jacc.2016.11.042

    Article  CAS  PubMed  Google Scholar 

  27. Nordestgaard BG, Chapman MJ, Ray K et al (2010) Lipoprotein(a) as a cardiovascular risk factor: current status. Eur Heart J 31:2844–2853. https://doi.org/10.1093/eurheartj/ehq386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cook NR, Mora S, Ridker PM (2018) Lipoprotein(a) and cardiovascular risk prediction among women. J Am Coll Cardiol 72:287–296. https://doi.org/10.1016/j.jacc.2018.04.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Welsh C, Celis-Morales CA, Brown R et al (2019) Comparison of conventional lipoprotein tests and apolipoproteins in the prediction of cardiovascular disease. Circulation 140:542–552. https://doi.org/10.1161/CIRCULATIONAHA.119.041149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grundy SM, Stone NJ, Bailey AL et al (2019) 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 73:e285–e350. https://doi.org/10.1016/j.jacc.2018.11.003

    Article  PubMed  Google Scholar 

  31. Doran B, Guo Y, Xu J et al (2014) Prognostic value of fasting versus nonfasting low-density lipoprotein cholesterol levels on long-term mortality: insight from the National Health and Nutrition Examination Survey III (NHANES-III). Circulation 130:546–553. https://doi.org/10.1161/CIRCULATIONAHA.114.010001

    Article  CAS  PubMed  Google Scholar 

  32. Nordestgaard BG, Chapman MJ, Humphries SE et al (2013) Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur Heart J 34:3478–3490a. https://doi.org/10.1093/eurheartj/eht273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pérez de Isla L, Alonso R, Mata N et al (2017) Predicting cardiovascular events in familial hypercholesterolemia: the SAFEHEART Registry (Spanish Familial Hypercholesterolemia Cohort Study). Circulation 135:2133–2144. https://doi.org/10.1161/CIRCULATIONAHA.116.024541

    Article  PubMed  Google Scholar 

  34. Akioyamen LE, Genest J, Shan SD et al (2017) Estimating the prevalence of heterozygous familial hypercholesterolaemia: a systematic review and meta-analysis. BMJ Open 7:e016461. https://doi.org/10.1136/bmjopen-2017-016461

    Article  PubMed  PubMed Central  Google Scholar 

  35. Masana L, Zamora A, Plana N et al (2019) Incidence of cardiovascular disease in patients with familial hypercholesterolemia phenotype: analysis of 5 years follow-up of real-world data from more than 1.5 million patients. J Clin Med 8:1080. https://doi.org/10.3390/jcm8071080

    Article  CAS  PubMed Central  Google Scholar 

  36. Rader DJ, Cohen J, Hobbs HH (2003) Monogenic hypercholesterolemia: new insights in pathogenesis and treatment. J Clin Invest 111:1795–1803. https://doi.org/10.1172/JCI200318925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vrijkotte TGM, Krukziener N, Hutten BA et al (2012) Maternal lipid profile during early pregnancy and pregnancy complications and outcomes: the ABCD study. J Clin Endocrinol Metab 97:3917–3925. https://doi.org/10.1210/jc.2012-1295

    Article  CAS  PubMed  Google Scholar 

  38. Schaefer-Graf UM, Meitzner K, Ortega-Senovilla H et al (2011) Differences in the implications of maternal lipids on fetal metabolism and growth between gestational diabetes mellitus and control pregnancies. Diabet Med 28:1053–1059. https://doi.org/10.1111/j.1464-5491.2011.03346.x

    Article  CAS  PubMed  Google Scholar 

  39. Belo L, Caslake M, Gaffney D et al (2002) Changes in LDL size and HDL concentration in normal and preeclamptic pregnancies. Atherosclerosis 162:425–432. https://doi.org/10.1016/s0021-9150(01)00734-1

    Article  CAS  PubMed  Google Scholar 

  40. Manten GTR, Franx A, van der Hoek YY et al (2003) Changes of plasma lipoprotein(a) during and after normal pregnancy in Caucasians. J Mater Fetal Neonatal Med 14:91–95. https://doi.org/10.1080/jmf.14.2.91.95

    Article  CAS  Google Scholar 

  41. Montes A, Walden CE, Knopp RH et al (1984) Physiologic and supraphysiologic increases in lipoprotein lipids and apoproteins in late pregnancy and postpartum. Possible markers for the diagnosis of “prelipemia”. Arteriosclerosis 4:407–417. https://doi.org/10.1161/01.atv.4.4.407

    Article  CAS  PubMed  Google Scholar 

  42. Human Placenta Project. In: https://www.nichd.nih.gov/. https://www.nichd.nih.gov/research/supported/HPP/default. Accessed 9 Jul 2020

  43. Marsit CJ (2016) Placental epigenetics in children’s environmental health. Semin Reprod Med 34:36–41. https://doi.org/10.1055/s-0035-1570028

    Article  CAS  PubMed  Google Scholar 

  44. Jayalekshmi VS, Ramachandran S (2020) Diet induced maternal hypercholesterolemia and in utero fetal programming. In: Tappia PS, Ramjiawan B, Dhalla NS (eds) Pathophysiology of obesity-induced health complications. Springer, Cham, pp 255–268

    Chapter  Google Scholar 

  45. Konkel L (2016) Lasting impact of an ephemeral organ: the role of the placenta in fetal programming. Environ Health Perspect 124:A124–A129. https://doi.org/10.1289/ehp.124-A124

    Article  PubMed  PubMed Central  Google Scholar 

  46. Roseboom TJ, van der Meulen JH, Ravelli AC et al (2001) Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview. Mol Cell Endocrinol 185:93–98. https://doi.org/10.1016/s0303-7207(01)00721-3

    Article  CAS  PubMed  Google Scholar 

  47. Benirschke K (1973) The human placenta. J. D. Boyd and W. J. Hamilton. Heffer, Cambridge, 365 pp. 1970. Teratology 8:77–78. https://doi.org/10.1002/tera.1420080118

    Article  Google Scholar 

  48. Malassiné A, Cronier L (2002) Hormones and human trophoblast differentiation. Endocr 19:3–11. https://doi.org/10.1385/ENDO:19:1:3

    Article  Google Scholar 

  49. Smith DW, Lemli L, Opitz JM (1964) A newly recognized syndrome of multiple congenital anomalies. J Pediatr 64:210–217. https://doi.org/10.1016/s0022-3476(64)80264-x

    Article  CAS  PubMed  Google Scholar 

  50. Waterham HR, Wijburg FA, Hennekam RC et al (1998) Smith-Lemli-Opitz syndrome is caused by mutations in the 7-dehydrocholesterol reductase gene. Am J Hum Genet 63:329–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lin DS, Pitkin RM, Connor WE (1977) Placental transfer of cholesterol into the human fetus. Am J Obstet Gynecol 128:735–739. https://doi.org/10.1016/0002-9378(77)90713-x

    Article  CAS  PubMed  Google Scholar 

  52. Yoshida S, Wada Y (2005) Transfer of maternal cholesterol to embryo and fetus in pregnant mice. J Lipid Res 46:2168–2174. https://doi.org/10.1194/jlr.M500096-JLR200

    Article  CAS  PubMed  Google Scholar 

  53. Tint GS et al (2006) The use of the Dhcr7 knockout mouse to accurately. J Lipid Res 47(7):1535–1541

    Article  CAS  PubMed  Google Scholar 

  54. Baardman ME, Erwich JJHM, Berger RMF et al (2012) The origin of fetal sterols in second-trimester amniotic fluid: endogenous synthesis or maternal-fetal transport? Am J Obstet Gynecol 207:202.e19. https://doi.org/10.1016/j.ajog.2012.06.003

    Article  CAS  Google Scholar 

  55. Baardman ME, Kerstjens-Frederikse WS, Berger RMF et al (2013) The role of maternal-fetal cholesterol transport in early fetal life: current insights. Biol Reprod 88:24. https://doi.org/10.1095/biolreprod.112.102442

    Article  CAS  PubMed  Google Scholar 

  56. Jauniaux E, Cindrova-Davies T, Johns J et al (2004) Distribution and transfer pathways of antioxidant molecules inside the first trimester human gestational sac. J Clin Endocrinol Metab 89:1452–1458. https://doi.org/10.1210/jc.2003-031332

    Article  CAS  PubMed  Google Scholar 

  57. Jauniaux E (2000) Fluid compartments of the embryonic environment. Hum Reprod Updat 6:268–278. https://doi.org/10.1093/humupd/6.3.268

    Article  CAS  Google Scholar 

  58. Raabe M, Flynn LM, Zlot CH et al (1998) Knockout of the abetalipoproteinemia gene in mice: reduced lipoprotein secretion in heterozygotes and embryonic lethality in homozygotes. Proc Natl Acad Sci USA 95:8686–8691. https://doi.org/10.1073/pnas.95.15.8686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Woollett LA (2011) Review: transport of maternal cholesterol to the fetal circulation. Placenta 32:S218–S221. https://doi.org/10.1016/j.placenta.2011.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chatuphonprasert W, Jarukamjorn K, Ellinger I (2018) Physiology and pathophysiology of steroid biosynthesis, transport and metabolism in the human placenta. Front Pharmacol 9:1027. https://doi.org/10.3389/fphar.2018.01027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Aye ILMH, Waddell BJ, Mark PJ, Keelan JA (2010) Placental ABCA1 and ABCG1 transporters efflux cholesterol and protect trophoblasts from oxysterol induced toxicity. Biochim Biophys Acta 1801:1013–1024. https://doi.org/10.1016/j.bbalip.2010.05.015

    Article  CAS  PubMed  Google Scholar 

  62. Palinski W (2014) Effect of maternal cardiovascular conditions and risk factors on offspring cardiovascular disease. Circulation 129:2066–2077. https://doi.org/10.1161/CIRCULATIONAHA.113.001805

    Article  PubMed  PubMed Central  Google Scholar 

  63. Stefulj J, Panzenboeck U, Becker T et al (2009) Human endothelial cells of the placental barrier efficiently deliver cholesterol to the fetal circulation via ABCA1 and ABCG1. Circ Res 104:600–608. https://doi.org/10.1161/CIRCRESAHA.108.185066

    Article  CAS  PubMed  Google Scholar 

  64. Scholler M, Wadsack C, Lang I et al (2012) Phospholipid transfer protein in the placental endothelium is affected by gestational diabetes mellitus. J Clin Endocrinol Metab 97:437–445. https://doi.org/10.1210/jc.2011-1942

    Article  CAS  PubMed  Google Scholar 

  65. Oram JF, Wolfbauer G, Vaughan AM et al (2003) Phospholipid transfer protein interacts with and stabilizes ATP-binding cassette transporter A1 and enhances cholesterol efflux from cells. J Biol Chem 278:52379–52385. https://doi.org/10.1074/jbc.M310695200

    Article  CAS  PubMed  Google Scholar 

  66. Chen M, Masaki T, Sawamura T (2002) LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: implications in endothelial dysfunction and atherosclerosis. Pharmacol Ther 95:89–100. https://doi.org/10.1016/s0163-7258(02)00236-x

    Article  CAS  PubMed  Google Scholar 

  67. Napoli C, Witztum JL, Calara F et al (2000) Maternal hypercholesterolemia enhances atherogenesis in normocholesterolemic rabbits, which is inhibited by antioxidant or lipid-lowering intervention during pregnancy: an experimental model of atherogenic mechanisms in human fetuses. Circ Res 87:946–952. https://doi.org/10.1161/01.res.87.10.946

    Article  CAS  PubMed  Google Scholar 

  68. Palinski W, D’Armiento FP, Witztum JL et al (2001) Maternal hypercholesterolemia and treatment during pregnancy influence the long-term progression of atherosclerosis in offspring of rabbits. Circ Res 89:991–996. https://doi.org/10.1161/hh2301.099646

    Article  CAS  PubMed  Google Scholar 

  69. Zhang R, Dong S, Ma W-W et al (2017) Modulation of cholesterol transport by maternal hypercholesterolemia in human full-term placenta. PLoS ONE 12:e0171934. https://doi.org/10.1371/journal.pone.0171934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rashid S, Curtis DE, Garuti R et al (2005) Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc Natl Acad Sci USA 102:5374–5379. https://doi.org/10.1073/pnas.0501652102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Marseille-Tremblay C, Ethier-Chiasson M, Forest J-C et al (2008) Impact of maternal circulating cholesterol and gestational diabetes mellitus on lipid metabolism in human term placenta. Mol Reprod Dev 75:1054–1062. https://doi.org/10.1002/mrd.20842

    Article  CAS  PubMed  Google Scholar 

  72. Jean D, Peter G (2004) Role of endothelial dysfunction in atherosclerosis. Circulation 109:27. https://doi.org/10.1161/01.CIR.0000131515.03336.f8

    Article  CAS  Google Scholar 

  73. Ingram DG, Newcomer SC, Price EM et al (2007) Chronic nitric oxide synthase inhibition blunts endothelium-dependent function of conduit coronary arteries, not arterioles. Am J Physiol Heart Circ Physiol 292:H2798–H2808. https://doi.org/10.1152/ajpheart.00899.2006

    Article  CAS  PubMed  Google Scholar 

  74. Landmesser U, Hornig B, Drexler H (2000) Endothelial dysfunction in hypercholesterolemia: mechanisms, pathophysiological importance, and therapeutic interventions. Semin Thromb Hemost 26:529–537. https://doi.org/10.1055/s-2000-13209

    Article  CAS  PubMed  Google Scholar 

  75. Searle A, Gómez-Rosso L, Meroño T et al (2011) High LDL levels are associated with increased lipoprotein-associated phospholipase A(2) activity on nitric oxide synthesis and reactive oxygen species formation in human endothelial cells. Clin Biochem 44:171–177. https://doi.org/10.1016/j.clinbiochem.2010.10.004

    Article  CAS  PubMed  Google Scholar 

  76. Fuenzalida B, Sobrevia B, Cantin C et al (2018) Maternal supraphysiological hypercholesterolemia associates with endothelial dysfunction of the placental microvasculature. Sci Rep 8:7690. https://doi.org/10.1038/s41598-018-25985-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Burton GJ, Hempstock J, Jauniaux E (2003) Oxygen, early embryonic metabolism and free radical-mediated embryopathies. Reprod BioMed Online 6:84–96. https://doi.org/10.1016/S1472-6483(10)62060-3

    Article  PubMed  Google Scholar 

  78. Pereira RD, De Long NE, Wang RC, et al (2015) Angiogenesis in the Placenta: The Role of Reactive Oxygen Species Signaling. In: BioMed Research International. https://www.hindawi.com/journals/bmri/2015/814543/. Accessed 7 Sep 2020

  79. Cuffe JSM, Holland O, Salomon C et al (2017) Review: placental derived biomarkers of pregnancy disorders. Placenta 54:104–110. https://doi.org/10.1016/j.placenta.2017.01.119

    Article  CAS  PubMed  Google Scholar 

  80. Kimura C, Watanabe K, Iwasaki A et al (2013) The severity of hypoxic changes and oxidative DNA damage in the placenta of early-onset preeclamptic women and fetal growth restriction. J Mater Fetal Neonatal Med 26:491–496. https://doi.org/10.3109/14767058.2012.733766

    Article  CAS  Google Scholar 

  81. Ho E, Karimi Galougahi K, Liu C-C et al (2013) Biological markers of oxidative stress: applications to cardiovascular research and practice. Redox Biol 1:483–491. https://doi.org/10.1016/j.redox.2013.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fernandez-Twinn DS, Constância M, Ozanne SE (2015) Intergenerational epigenetic inheritance in models of developmental programming of adult disease. Semin Cell Dev Biol 43:85–95. https://doi.org/10.1016/j.semcdb.2015.06.006

    Article  PubMed  PubMed Central  Google Scholar 

  83. Marciniak A, Patro-Małysza J, Kimber-Trojnar Ż et al (2017) Fetal programming of the metabolic syndrome. Taiwan J Obstet Gynecol 56:133–138. https://doi.org/10.1016/j.tjog.2017.01.001

    Article  PubMed  Google Scholar 

  84. Barker DJ, Winter PD, Osmond C et al (1989) Weight in infancy and death from ischaemic heart disease. Lancet 2:577–580. https://doi.org/10.1016/s0140-6736(89)90710-1

    Article  CAS  PubMed  Google Scholar 

  85. Salam RA, Das JK, Bhutta ZA (2014) Impact of intrauterine growth restriction on long-term health. Curr Opin Clin Nutr Metab Care 17:249–254. https://doi.org/10.1097/MCO.0000000000000051

    Article  CAS  PubMed  Google Scholar 

  86. Perrone S, Santacroce A, Picardi A, Buonocore G (2016) Fetal programming and early identification of newborns at high risk of free radical-mediated diseases. World J Clin Pediatr 5:172–181. https://doi.org/10.5409/wjcp.v5.i2.172

    Article  PubMed  PubMed Central  Google Scholar 

  87. Barker DJ (1995) Fetal origins of coronary heart disease. BMJ 311:171–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mothers, babies and health in later life (eBook, 1998) [WorldCat.org]. https://www.worldcat.org/title/mothers-babies-and-health-in-later-life/oclc/855710737. Accessed 9 Jul 2020

  89. Lucas A (1998) Programming by early nutrition: an experimental approach. J Nutr 128:401S–406S. https://doi.org/10.1093/jn/128.2.401S

    Article  CAS  PubMed  Google Scholar 

  90. Wadhwa PD, Buss C, Entringer S, Swanson JM (2009) Developmental origins of health and disease: brief history of the approach and current focus on epigenetic mechanisms. Semin Reprod Med 27:358–368. https://doi.org/10.1055/s-0029-1237424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Influence of maternal hypercholesterolaemia during pregnancy on progression of early atherosclerotic lesions in childhood: Fate of Early Lesions in Children (FELIC) study - The Lancet. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(99)02131-5/fulltext. Accessed 10 Jul 2020

  92. Goharkhay N, Sbrana E, Gamble PK et al (2007) Characterization of a murine model of fetal programming of atherosclerosis. Am J Obstet Gynecol 197:416.e1–416.e5. https://doi.org/10.1016/j.ajog.2007.08.002

    Article  Google Scholar 

  93. Napoli C, de Nigris F, Welch JS et al (2002) Maternal hypercholesterolemia during pregnancy promotes early atherogenesis in LDL receptor-deficient mice and alters aortic gene expression determined by microarray. Circulation 105:1360–1367. https://doi.org/10.1161/hc1102.106792

    Article  CAS  PubMed  Google Scholar 

  94. Elahi MM, Cagampang FR, Anthony FW et al (2008) Statin treatment in hypercholesterolemic pregnant mice reduces cardiovascular risk factors in their offspring. Hypertension 51:939–944. https://doi.org/10.1161/HYPERTENSIONAHA.107.100982

    Article  CAS  PubMed  Google Scholar 

  95. Catov JM, Ness RB, Wellons MF et al (2010) Prepregnancy lipids related to preterm birth risk: the coronary artery risk development in young adults study. J Clin Endocrinol Metab 95:3711–3718. https://doi.org/10.1210/jc.2009-2028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lorenzen JM, Martino F, Thum T (2012) Epigenetic modifications in cardiovascular disease. Basic Res Cardiol 107:245. https://doi.org/10.1007/s00395-012-0245-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liguori A, D’Armiento FP, Palagiano A et al (2007) Effect of gestational hypercholesterolaemia on omental vasoreactivity, placental enzyme activity and transplacental passage of normal and oxidised fatty acids. BJOG 114:1547–1556. https://doi.org/10.1111/j.1471-0528.2007.01510.x

    Article  CAS  PubMed  Google Scholar 

  98. Bernstein BE, Stamatoyannopoulos JA, Costello JF et al (2010) The NIH roadmap epigenomics mapping consortium. Nat Biotechnol 28:1045–1048. https://doi.org/10.1038/nbt1010-1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Desai M, Jellyman JK, Ross MG (2015) Epigenomics, gestational programming and risk of metabolic syndrome. Int J Obes (Lond) 39:633–641. https://doi.org/10.1038/ijo.2015.13

    Article  CAS  Google Scholar 

  100. McMillen IC, Robinson JS (2005) Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev 85:571–633. https://doi.org/10.1152/physrev.00053.2003

    Article  CAS  PubMed  Google Scholar 

  101. Clarke HJ (1992) Nuclear and chromatin composition of mammalian gametes and early embryos. Biochem Cell Biol 70:856–866. https://doi.org/10.1139/o92-134

    Article  CAS  PubMed  Google Scholar 

  102. Weaver JR, Susiarjo M, Bartolomei MS (2009) Imprinting and epigenetic changes in the early embryo. Mamm Genome 20:532–543. https://doi.org/10.1007/s00335-009-9225-2

    Article  PubMed  Google Scholar 

  103. Burdge GC, Hoile SP, Uller T et al (2011) Progressive, transgenerational changes in offspring phenotype and epigenotype following nutritional transition. PLoS ONE 6:e28282. https://doi.org/10.1371/journal.pone.0028282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fang M, Chen D, Yang CS (2007) Dietary polyphenols may affect DNA methylation. J Nutr 137:223S–228S. https://doi.org/10.1093/jn/137.1.223S

    Article  CAS  PubMed  Google Scholar 

  105. Caldji C, Hellstrom IC, Zhang T-Y et al (2011) Environmental regulation of the neural epigenome. FEBS Lett 585:2049–2058. https://doi.org/10.1016/j.febslet.2011.03.032

    Article  CAS  PubMed  Google Scholar 

  106. Guo JU, Ma DK, Mo H et al (2011) Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat Neurosci 14:1345–1351. https://doi.org/10.1038/nn.2900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14:3156. https://doi.org/10.1186/gb-2013-14-10-r115

    Article  Google Scholar 

  108. Hales CN, Barker DJ, Clark PM et al (1991) Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 303:1019–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Doherty AS, Mann MR, Tremblay KD et al (2000) Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol Reprod 62:1526–1535. https://doi.org/10.1095/biolreprod62.6.1526

    Article  CAS  PubMed  Google Scholar 

  110. Bouchard L, Rabasa-Lhoret R, Faraj M et al (2010) Differential epigenomic and transcriptomic responses in subcutaneous adipose tissue between low and high responders to caloric restriction. Am J Clin Nutr 91:309–320. https://doi.org/10.3945/ajcn.2009.28085

    Article  CAS  PubMed  Google Scholar 

  111. McGregor RA, Choi MS (2011) microRNAs in the regulation of adipogenesis and obesity. Curr Mol Med 11:304–316. https://doi.org/10.2174/156652411795677990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Brion M-JA, Ness AR, Rogers I et al (2010) Maternal macronutrient and energy intakes in pregnancy and offspring intake at 10 y: exploring parental comparisons and prenatal effects1234. Am J Clin Nutr 91:748–756. https://doi.org/10.3945/ajcn.2009.28623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kirk SL, Samuelsson A-M, Argenton M et al (2009) Maternal obesity induced by diet in rats permanently influences central processes regulating food intake in offspring. PLoS One. https://doi.org/10.1371/journal.pone.0005870

    Article  PubMed  PubMed Central  Google Scholar 

  114. Godfrey KM, Sheppard A, Gluckman PD et al (2011) Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes 60:1528–1534. https://doi.org/10.2337/db10-0979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Nordor AV, Nehar-Belaid D, Richon S et al (2017) The early pregnancy placenta foreshadows DNA methylation alterations of solid tumors. Epigenetics 12:793–803. https://doi.org/10.1080/15592294.2017.1342912

    Article  PubMed  PubMed Central  Google Scholar 

  116. Grigoriu A, Ferreira JC, Choufani S et al (2011) Cell specific patterns of methylation in the human placenta. Epigenetics 6:368–379. https://doi.org/10.4161/epi.6.3.14196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Soncin F, Natale D, Parast MM (2015) Signaling pathways in mouse and human trophoblast differentiation: a comparative review. Cell Mol Life Sci 72:1291–1302. https://doi.org/10.1007/s00018-014-1794-x

    Article  CAS  PubMed  Google Scholar 

  118. Skinner MK (2011) Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability. Epigenetics 6:838–842. https://doi.org/10.4161/epi.6.7.16537

    Article  CAS  PubMed  Google Scholar 

  119. Lange UC, Schneider R (2010) What an epigenome remembers. BioEssays 32:659–668. https://doi.org/10.1002/bies.201000030

    Article  CAS  PubMed  Google Scholar 

  120. Barres R, Zierath JR (2011) DNA methylation in metabolic disorders. Am J Clin Nutr 93:897S–900. https://doi.org/10.3945/ajcn.110.001933

    Article  CAS  PubMed  Google Scholar 

  121. Chodick G, Tenne Y, Barer Y et al (2020) Gestational diabetes and long-term risk for dyslipidemia: a population-based historical cohort study. BMJ Open Diabetes Res Care 8:e000870. https://doi.org/10.1136/bmjdrc-2019-000870

    Article  PubMed  PubMed Central  Google Scholar 

  122. Son GH, Kwon JY, Kim YH, Park YW (2010) Maternal serum triglycerides as predictive factors for large-for-gestational age newborns in women with gestational diabetes mellitus. Acta Obstet Gynecol Scand 89:700–704. https://doi.org/10.3109/00016341003605677

    Article  CAS  PubMed  Google Scholar 

  123. Herrera E, Ortega-Senovilla H (2010) Disturbances in lipid metabolism in diabetic pregnancy—are these the cause of the problem? Best Pract Res Clin Endocrinol Metab 24:515–525. https://doi.org/10.1016/j.beem.2010.05.006

    Article  CAS  PubMed  Google Scholar 

  124. Moore TR (2010) Fetal exposure to gestational diabetes contributes to subsequent adult metabolic syndrome. Am J Obstet Gynecol 202:643–649. https://doi.org/10.1016/j.ajog.2010.02.059

    Article  PubMed  Google Scholar 

  125. Koklu E, Ozturk MA, Kurtoglu S et al (2007) Aortic intima-media thickness, serum IGF-I, IGFBP-3, and leptin levels in intrauterine growth-restricted newborns of healthy mothers. Pediatr Res 62:704–709. https://doi.org/10.1203/PDR.0b013e318157caaa

    Article  CAS  PubMed  Google Scholar 

  126. Merzouk H, Madani S, Prost J et al (1999) Changes in serum lipid and lipoprotein concentrations and compositions at birth and after 1 month of life in macrosomic infants of insulin-dependent diabetic mothers. Eur J Pediatr 158:750–756. https://doi.org/10.1007/s004310051194

    Article  CAS  PubMed  Google Scholar 

  127. Scholler M, Wadsack C, Metso J et al (2012) Phospholipid transfer protein is differentially expressed in human arterial and venous placental endothelial cells and enhances cholesterol efflux to fetal HDL. J Clin Endocrinol Metab 97:2466–2474. https://doi.org/10.1210/jc.2011-2969

    Article  CAS  PubMed  Google Scholar 

  128. Ferderbar S, Pereira EC, Apolinário E et al (2007) Cholesterol oxides as biomarkers of oxidative stress in type 1 and type 2 diabetes mellitus. Diabetes Metab Res Rev 23:35–42. https://doi.org/10.1002/dmrr.645

    Article  CAS  PubMed  Google Scholar 

  129. Chu SY, Callaghan WM, Kim SY et al (2007) Maternal obesity and risk of gestational diabetes mellitus. Diabetes Care 30:2070–2076. https://doi.org/10.2337/dc06-2559a

    Article  PubMed  Google Scholar 

  130. Schaefer-Graf UM, Pawliczak J, Passow D et al (2005) Birth weight and parental BMI predict overweight in children from mothers with gestational diabetes. Diabetes Care 28:1745–1750. https://doi.org/10.2337/diacare.28.7.1745

    Article  PubMed  Google Scholar 

  131. Pischon T, Nimptsch K (2016) Obesity and risk of cancer: an introductory overview. Recent Results Cancer Res 208:1–15. https://doi.org/10.1007/978-3-319-42542-9_1

    Article  CAS  PubMed  Google Scholar 

  132. Catalano PM, McIntyre HD, Cruickshank JK et al (2012) The hyperglycemia and adverse pregnancy outcome study: associations of GDM and obesity with pregnancy outcomes. Diabetes Care 35:780–786. https://doi.org/10.2337/dc11-1790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kampmann U, Madsen LR, Skajaa GO et al (2015) Gestational diabetes: a clinical update. World J Diabetes 6:1065–1072. https://doi.org/10.4239/wjd.v6.i8.1065

    Article  PubMed  PubMed Central  Google Scholar 

  134. Saben J, Lindsey F, Zhong Y et al (2014) Maternal obesity is associated with a lipotoxic placental environment. Placenta 35:171–177. https://doi.org/10.1016/j.placenta.2014.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Denison FC, Roberts KA, Barr SM, Norman JE (2010) Obesity, pregnancy, inflammation, and vascular function. Reproduction 140:373–385. https://doi.org/10.1530/REP-10-0074

    Article  CAS  PubMed  Google Scholar 

  136. Kelishadi R, Poursafa P (2014) A review on the genetic, environmental, and lifestyle aspects of the early-life origins of cardiovascular disease. Curr Probl Pediatr Adolesc Health Care 44:54–72. https://doi.org/10.1016/j.cppeds.2013.12.005

    Article  PubMed  Google Scholar 

  137. Hart R, Doherty DA (2015) The potential implications of a PCOS diagnosis on a woman’s long-term health using data linkage. J Clin Endocrinol Metab 100:911–919. https://doi.org/10.1210/jc.2014-3886

    Article  CAS  PubMed  Google Scholar 

  138. Balen AH, Morley LC, Misso M et al (2016) The management of anovulatory infertility in women with polycystic ovary syndrome: an analysis of the evidence to support the development of global WHO guidance. Hum Reprod Updat 22:687–708. https://doi.org/10.1093/humupd/dmw025

    Article  Google Scholar 

  139. Sterling L, Liu J, Okun N et al (2016) Pregnancy outcomes in women with polycystic ovary syndrome undergoing in vitro fertilization. Fertil Steril 105:791–797.e2. https://doi.org/10.1016/j.fertnstert.2015.11.019

    Article  PubMed  Google Scholar 

  140. Jones HN, Jansson T, Powell TL (2009) IL-6 stimulates system A amino acid transporter activity in trophoblast cells through STAT3 and increased expression of SNAT2. Am J Physiol, Cell Physiol 297:C1228–1235. https://doi.org/10.1152/ajpcell.00195.2009

    Article  CAS  Google Scholar 

  141. Palomba S, Russo T, Falbo A et al (2012) Decidual endovascular trophoblast invasion in women with polycystic ovary syndrome: an experimental case-control study. J Clin Endocrinol Metab 97:2441–2449. https://doi.org/10.1210/jc.2012-1100

    Article  CAS  PubMed  Google Scholar 

  142. Battaglia C, Mancini F, Cianciosi A et al (2009) Cardiovascular risk in normal weight, eumenorrheic, nonhirsute daughters of patients with polycystic ovary syndrome: a pilot study. Fertil Steril 92:240–249. https://doi.org/10.1016/j.fertnstert.2008.05.018

    Article  PubMed  Google Scholar 

  143. Xu N, Chua AK, Jiang H et al (2014) Early embryonic androgen exposure induces transgenerational epigenetic and metabolic changes. Mol Endocrinol 28:1329–1336. https://doi.org/10.1210/me.2014-1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Vanky E, Isaksen H, Moen MH, Carlsen SM (2008) Breastfeeding in polycystic ovary syndrome. Acta Obstet Gynecol Scand 87:531–535. https://doi.org/10.1080/00016340802007676

    Article  PubMed  Google Scholar 

  145. Martin RM, Gunnell D, Smith GD (2005) Breastfeeding in infancy and blood pressure in later life: systematic review and meta-analysis. Am J Epidemiol 161:15–26. https://doi.org/10.1093/aje/kwh338

    Article  PubMed  Google Scholar 

  146. Pontesilli M, Painter RC, Grooten IJ et al (2015) Subfertility and assisted reproduction techniques are associated with poorer cardiometabolic profiles in childhood. Reprod BioMed Online 30:258–267. https://doi.org/10.1016/j.rbmo.2014.11.006

    Article  PubMed  Google Scholar 

  147. Issa CM, Abu Khuzam RH (2017) In vitro fertilization-induced hypertriglyceridemia with secondary acute pancreatitis and diabetic ketoacidosis. SAGE Open Med Case Rep. https://doi.org/10.1177/2050313X16689209

    Article  PubMed  PubMed Central  Google Scholar 

  148. Doherty DA, Newnham JP, Bower C, Hart R (2015) Implications of polycystic ovary syndrome for pregnancy and for the health of offspring. Obstet Gynecol 125:1397–1406. https://doi.org/10.1097/AOG.0000000000000852

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

Indian Council for Medical Research (5/4/1-5/2019 NCD-II), Department of Science and Technology-Inspire Fellowship (IF 170711).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surya Ramachandran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jayalekshmi, V.S., Ramachandran, S. Maternal cholesterol levels during gestation: boon or bane for the offspring?. Mol Cell Biochem 476, 401–416 (2021). https://doi.org/10.1007/s11010-020-03916-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03916-2

Keywords

  • Maternal hypercholesterolemia
  • Placenta
  • Fetal programming
  • Atherosclerosis