Skip to main content
Log in

Effects of pulsed electrical stimulation on growth factor gene expression and proliferation in human dermal fibroblasts

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Human dermal fibroblast proliferation plays an important role in skin wound healing, and electrical stimulation (ES) promotes skin wound healing. Although the use of ES for skin wound healing has been investigated, the mechanism underlying the effects of ES on cells is still unclear. This study examined the effects of pulsed electrical stimulation (PES) on human dermal fibroblasts. Normal adult human dermal fibroblasts were exposed to a frequency of 4800 Hz, voltage of 1–5 V, and PES exposure time of 15, 30, and 60 min. Dermal fibroblast proliferation and growth factor gene expression were investigated for 6–48 h post PES. Dermal fibroblast proliferation significantly increased from 24 to 48 h post PES at a voltage of 5 V and PES exposure time of 60 min. Under the same conditions, post PES, platelet-derived growth factor subunit A (PDGFA), fibroblast growth factor 2 (FGF2), and transforming growth factor beta 1 (TGF-β1) expression significantly increased from 6 to 24 h, 12 to 48 h, and 24 to 48 h, respectively. Imatinib, a specific inhibitor of platelet-derived growth factor receptor, significantly inhibited the proliferation of dermal fibroblasts promoted by PES, suggesting that PDGFA expression, an early response of PES, was involved in promoting the cell proliferation. Therefore, PES at 4800 Hz may initially promote PDGFA expression and subsequently stimulate the expression of two other growth factors, resulting in dermal fibroblast proliferation after 24 h or later. In conclusion, PES may activate the cell growth phase of wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nuccitelli R, Nucciteli P, Li C, Narsing S, Pariser DM, Lui K (2011) The electric field near human skin wounds declines with age and provides a non-invasive indicator of wound healing. Wound Repair Regen 19(5):645–655

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhao M (2008) Electrical fields in wound healing—an overriding signal that directs cell migration. Semin Cell Dev Biol 20(6):674–682

    Article  PubMed  Google Scholar 

  3. Guo A, Song B, Reid B, Gu Y, Forrester JV, Jahoda CA, Zhao M (2010) Effects of physiological electric fields on migration of human dermal fibroblasts. J Investig Dermatol 130(9):2320–2327

    Article  CAS  PubMed  Google Scholar 

  4. Kim MS, Lee MH, Kwon BJ, Seo HJ, Koo MA, You KE, Kim D, Park JC (2015) Control of neonatal human dermal fibroblast migration on poly (lactic-co-glycolic acid)-coated surfaces by electrotaxis. J Tissue Eng Regen Med 11(3):862–868. https://doi.org/10.1002/term.1986

    Article  CAS  PubMed  Google Scholar 

  5. Kim MS, Lee MH, Kwon BJ, Koo MA, Seon GM, Park JC (2015) Golgi polarization plays a role in the directional migration of neonatal dermal fibroblasts induced by the direct current electric fields. Biochem Biophys Res Commun 460(2):255–260. https://doi.org/10.1016/j.bbrc.2015.03.021

    Article  CAS  PubMed  Google Scholar 

  6. Sarah S, Carlisle D, Rebecca KW (2017) Electrical stimulation increases random migration of human dermal fibroblasts. Ann Biomed Eng 45(9):2049–2060. https://doi.org/10.1007/s10439-017-1849-x

    Article  Google Scholar 

  7. Gyu SL, Min GK, Hyuck JK (2019) Electrical stimulation induces direct reprogramming of human dermal fibroblasts into hyaline chondrogenic cells. Biochem Biophys Res Commun 513(4):990–996. https://doi.org/10.1016/j.bbrc.2019.04.027

    Article  CAS  Google Scholar 

  8. Clark RA (1993) Regulation of fibroplasia in cutaneous wound repair. Am J Med Sci 306(1):42–48

    Article  CAS  PubMed  Google Scholar 

  9. Yoshiyuki Y, Masaharu S, Mikiko U, Masafumi M (2016) Monophasic pulsed microcurrent of 1–8 Hz increases the number of human dermal fibroblasts. Prog Rehabil Med 1:20160005. https://doi.org/10.2490/prm.20160005

    Article  Google Scholar 

  10. Suting L, Danhua L, Jianming T, Jie M, Ming H, Yang L, Yaodan L, Linlin W, Cheng L, Li H (2019) Electrical stimulation activates fibroblasts through the elevation of intracellular free Ca2+ potential mechanism of pelvic electrical stimulation therapy. Biomed Res Int 2019:7387803. https://doi.org/10.1155/2019/7387803 (eCollection 2019)

    Article  CAS  Google Scholar 

  11. Rouabhia M, Park H, Meng S, Derbali H, Zhang Z (2013) (2013) Electrical stimulation promotes wound healing by enhancing dermal fibroblast activity and promoting myofibroblast transdifferentiation. PLoS One 8(8):e71660. https://doi.org/10.1371/journal.pone.0071660 (eCollection 2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang Y, Rouabhia M, Lavertu D, Zhang Z (2014) Pulsed electrical stimulation modulates fibroblasts’ behaviour through the Smad signalling pathway. J Tissue Eng Regen Med 11(4):1110–1121. https://doi.org/10.1002/term.2014

    Article  CAS  Google Scholar 

  13. Ojingwa JC, Isseroff RR (2003) Electrical stimulation of wound healing. J Investig Dermatol 121(1):1–12. https://doi.org/10.1046/j.1523-1747.2003.12454.x

    Article  CAS  PubMed  Google Scholar 

  14. Feedar JA, Kloth LC, Gentzkow GD (1991) Chronic dermal ulcer healing enhanced with monophasic pulsed electrical stimulation. Phys Ther 71(9):639–649

    Article  CAS  PubMed  Google Scholar 

  15. Masashi M, Kousei T (1985) Physical therapy in practice. Nanzando, Tokyo

    Google Scholar 

  16. Tetsuo T (1979) Introduction to electrotherapy. Kenyukan, Tokyo

    Google Scholar 

  17. Hori Y, Akimoto R, Hori A, Kato K, Chino D, Matsumoto S, Kamiya S, Watanabe Y (2009) Skin collagen reproduction increased by ascorbic acid derivative iontophoresis by frequent-reversal bipolar electric stimulation. J Cosmet Sci 60(4):415–422

    CAS  PubMed  Google Scholar 

  18. Arai KY, Nakamura Y, Hachiya Y, Tsuchiya H, Akimoto R, Hosoki K, Kamiya S, Ichikawa H, Nishiyama T (2013) Pulsed electric current induces the differentiation of human keratinocytes. Mol Cell Biochem 379(1–2):235–241. https://doi.org/10.1007/s11010-013-1645-3

    Article  CAS  PubMed  Google Scholar 

  19. Harrach S, Barz V, Pap T, Pavenstädt H (2019) Notch signaling activity determines uptake and biological effect of imatinib in systemic sclerosis dermal fibroblasts. J Investig Dermatol 139(2):439–447. https://doi.org/10.1016/j.jid.2018.08.021

    Article  CAS  PubMed  Google Scholar 

  20. Kameda H (2009) Imatinib. Jpn J Clin Immunol 32(2):77–84. https://doi.org/10.2177/jsci.32.77

    Article  CAS  Google Scholar 

  21. Kim IS, Song JK, Zhang YL, Lee TH, Cho TH, Song YM, Kim DK, Kim SJ, Hwang SJ (2006) Biphasic electric current stimulates proliferation and induces VEGF production in osteoblasts. Biochim Biophys Acta 1763(9):907–916

    Article  CAS  PubMed  Google Scholar 

  22. Borena BM, Martens A, Broeckx SY, Meyer E, Chiers K, Duchateau L, Spaas JH (2015) Regenerative skin wound healing in mammals: state-of-the-art on growth factor and stem cell based treatments. Cell Physiol Biochem 36(1):1–23. https://doi.org/10.1159/000374049

    Article  CAS  PubMed  Google Scholar 

  23. Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83(3):835–870

    Article  CAS  PubMed  Google Scholar 

  24. Kiritsy CP, Lynch AB, Lynch SE (1993) Role of growth factors in cutaneous wound healing: a review. Crit Rev Oral Biol Med 4(5):729–760

    Article  CAS  PubMed  Google Scholar 

  25. Lynch SE, Nixon JC, Colvin RB, Antoniades HN (1987) Role of platelet-derived growth factor in wound healing: synergistic effects with other growth factors. Proc Natl Acad Sci USA 84(21):7696–7700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Seppä H, Grotendorst G, Seppä S, Schiffmann E, Martin GR (1982) Platelet-derived growth factor in chemotactic for fibroblasts. J Cell Biol 92(2):584–588

    Article  PubMed  Google Scholar 

  27. Shah JM, Omar E, Pai DR, Sood S (2012) Cellular events and biomarkers of wound healing. Indian J Plast Surg 45(2):220–228. https://doi.org/10.4103/0970-0358.101282

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tanaka R, Seki Y, Saito Y, Kamiya S, Fujita M, Okutsu H, Iyoda T, Takai T, Owaki T, Yajima H, Taira J, Hayashi R, Kodama H, Matsunaga T, Fukai F (2014) Tenascin-C-derived peptide TNIIIA2 highly enhances cell survival and platelet-derived growth factor (PDGF)-dependent cell proliferation through potentiated and sustained activation of integrin α5β1. J Biol Chem 289(25):17699–17708. https://doi.org/10.1074/jbc.M113.546622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Horikawa S, Ishii Y, Hamashima T, Yamamoto S, Mori H, Fujimori T, Shen J, Inoue R, Nishizono H, Itoh H, Majima M, Abraham D, Miyawaki T, Sasahara M (2015) PDGFRα plays a crucial role in connective tissue remodeling. Sci Rep. https://doi.org/10.1038/srep17948

    Article  PubMed  PubMed Central  Google Scholar 

  30. Boilly B, Vercoutter-Edouart AS, Hondermarck H, Nurcombe V, Le Bourhis X (2000) FGF signals for cell proliferation and migration through different pathways. Cytokine Growth Factor Rev 11(4):295–302

    Article  CAS  PubMed  Google Scholar 

  31. Makino T, Jinnin M, Muchemwa FC, Fukushima S, Kogushi-Nishi H, Moriya C, Igata T, Fujisawa A, Johno T, Ihn H (2010) Basic fibroblast growth factor stimulates the proliferation of human dermal fibroblasts via the ERK1/2 and JNK pathways. Br J Dermatol 162(4):717–723. https://doi.org/10.1111/j.1365-2133.2009.09581.x

    Article  CAS  PubMed  Google Scholar 

  32. Grazul-Bilska AT, Luthra G, Reynolds LP, Bilski JJ, Johnson ML, Adbullah SA, Redmer DA, Abdullah KM (2002) Effects of basic fibroblast growth factor (FGF-2) on proliferation of human skin fibroblasts in type II diabetes mellitus. Exp Clin Endocrinol Diabetes 110(4):176–181

    Article  CAS  PubMed  Google Scholar 

  33. Miyazono K (1996) Transforming growth factor-beta and its receptors. Nihon Yakurigaku Zasshi 107(3):133–140

    Article  CAS  PubMed  Google Scholar 

  34. Miyazono K, Ten Dijke P, Ichijo H, Heldin CH (1994) Receptors for transforming growth factor-beta. Adv Immunol 55:181–220

    Article  CAS  PubMed  Google Scholar 

  35. Cohen MH, Williams G, Johnson JR, Duan J, Gobburu J, Rahman A, Benson K, Leighton J, Kim SK, Wood R, Rothmann M, Chen G, KM U, Staten AM, Pazdur R (2002) Approval summary for imatinib mesylate capsules in the treatment of chronic myelogenous leukemia. Clin Cancer Res 8(5):935–942

    CAS  PubMed  Google Scholar 

  36. Druker JB, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, Zimmermann J, Lydon NB (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2(5):561–566. https://doi.org/10.1038/nm0596-561

    Article  CAS  PubMed  Google Scholar 

  37. Buchdunger E, Cioffi CL, Law N, Stover D, Ohno-Jones S, Druker BJ, Lydon NB (2000) Abl proteintyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet derived growth factor receptors. J Pharmacol Exp Ther 295(1):139–145

    CAS  PubMed  Google Scholar 

  38. Pierce GF, Mustoe TA, Lingelbach J, Masakowski VR, Griffin GL, Senior RM, Deuel TF (1989) Platelet-derived growth factor and transforming growth factor-beta enhance tissue repair activities by unique mechanisms. J Cell Biol 109(1):429–440

    Article  CAS  PubMed  Google Scholar 

  39. Song QH, Klepeis VE, Nugent MA, Trinkaus-Randall V (2002) TGF-beta1 regulates TGF-beta1 and FGF-2 mRNA expression during fibroblast wound healing. Mol Pathol 55(3):164–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Strutz F, Zeisberg M, Renziehausen A, Raschke B, Becker V, van Kooten C, Müller G (2001) TGF-beta 1 induces proliferation in human renal fibroblasts via induction of basic fibroblast growth factor (FGF-2). Kidney Int 59(2):579–592

    Article  CAS  PubMed  Google Scholar 

  41. Tammi RH, Passi AG, Rilla K, Karousou E, Vigetti D, Makkonen K, Tammi MI (2011) Transcriptional and post-translational regulation of hyaluronan synthesis. FEBS J 78(9):1419–1428. https://doi.org/10.1111/j.1742-4658.2011.08070.x

    Article  CAS  Google Scholar 

  42. Pasonen-Seppänen S, Karvinen S, Törrönen K, Hyttinen JM, Jokela T, Lammi MJ, Tammi MI, Tammi R (2003) EGF upregulates, whereas TGF-beta downregulates, the hyaluronan synthases Has2 and Has3 in organotypic keratinocyte cultures: correlations with epidermal proliferation and differentiation. J Investig Dermatol 120(6):1038–1044. https://doi.org/10.1046/j.1523-1747.2003.12249.x

    Article  PubMed  Google Scholar 

  43. Sugiyama Y, Shimada A, Sayo T, Sakai S, Inoue S (1998) Putative hyaluronan synthase mRNA are expressed in mouse skin and TGF-beta upregulates their expression in cultured human skin cells. J Investig Dermatol 110(2):116–121. https://doi.org/10.1046/j.1523-1747.1998.00093.x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroya Urabe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving animal and human rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

No informed consent was required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urabe, H., Akimoto, R., Kamiya, S. et al. Effects of pulsed electrical stimulation on growth factor gene expression and proliferation in human dermal fibroblasts. Mol Cell Biochem 476, 361–368 (2021). https://doi.org/10.1007/s11010-020-03912-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03912-6

Keywords

Navigation