Skip to main content
Log in

Inhibitory effect of bound polyphenol from foxtail millet bran on miR-149 methylation increases the chemosensitivity of human colorectal cancer HCT-8/Fu cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Nature polyphenols widely present in plants and foods are promising candidates in cancer chemotherapy. Emerging evidence has shown that plant polyphenols regulate the expression of miRNAs to exert the anti-Multidrug resistance (MDR) activity, which partly attributes to their regulation on miRNAs methylation. Our previous study found that bound polyphenol from foxtail millet bran (BPIS) had potential as an anti-MDR agent for colorectal cancer (CRC), but its mechanism remains unclear. The present findings demonstrated that BPIS upregulated the expression of miR-149 by reducing the methylation of its CpG islands, which subsequently induced the cell cycle arrest in G2/M phase, resulting in enhancing the chemo-sensitivity of HCT-8/Fu cells. Mechanically, BPIS and its active components (FA and p-CA) reduced miR-149 methylation by inhibiting the expression levels of DNA methyltransferases, promoting a remarkable increase of miR-149 expression. Further, the increased miR-149 induced cell cycle arrest in G2/M phase by inhibiting the expression of Akt, Cyclin B1 and CDK1, thus increasing the chemosensitivity of HCT-8/Fu cells. Additionally, a strong inducer of DNA de-methylation (5-aza-dc) treatment markedly increased the chemosensitivity of CRC through elevating miR-149 expression, which indicates the hypermethylation of miR-149 may be the key cause of drug resistance in CRC. The study indicates that the enhanced chemosensitivity of BPIS on CRC is mainly attributed to the increase of miR-149 expression induced by methylation inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

BPIS:

Bound polyphenol from foxtail millet bran

CRC:

Colorectal cancer

DNMTs:

DNA methyltransferases

DMSO:

Dimethyl sulphoxide

FBS:

Fetal bovine serum

FA:

Ferulic acid

MDR:

Multidrug resistance

MSP:

Methylation-specific PCR

p-CA:

P-coumaric acid

PVDF:

Polyvinylidene fluoride

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424

    PubMed  Google Scholar 

  2. Bhattacharya S, Muhammd N, Steele R, Kornbluth J, Ray RB (2017) Bitter melon enhances natural killer mediated toxicity against head and neck cancer cells. Cancer Prev Res 10:337–344

    Article  CAS  Google Scholar 

  3. Yuan L, Zhang Y, Xia J, Liu B, Zhang Q, Liu J, Luo L, Peng Z, Song Z, Zhu R (2015) Resveratrol induces cell cycle arrest via a p53-independent pathway in A549 cells. Mol Med Rep 11:2459–2464

    Article  CAS  PubMed  Google Scholar 

  4. Muhammad N, Steele R, Isbell ST, Philips N, Ray RB (2017) Bitter melon extract inhibits breast cancer growth in preclinical model by inducing autophagic cell death. Oncotarget 8:66226–66236

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bhattacharya S, Muhammad N, Steele R, Peng G, Ray RB (2016) Immunomodulatory role of bitter melon extract in inhibition of head and neck squamous cell carcinoma growth. Oncotarget 7:33202–33209

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bhattacharya S, Muhammad N, Steele R, Kornbluth J, Ray RB (2017) Bitter melon enhances natural killer-mediated toxicity against head and neck cancer cells. Cancer Prev Res 10:337–344

    Article  CAS  Google Scholar 

  7. Shi J, Shan S, Li Z, Li H, Li X, Li Z (2015) Bound polyphenol from foxtail millet bran induces apoptosis in HCT-116 cell through ROS generation. J Funct Foods 17:958–968

    Article  CAS  Google Scholar 

  8. Yang R, Shan S, Zhang C, Shi J, Li H, Li Z (2020) Inhibitory effects of bound polyphenol from foxtail millet bran on colitis-associated carcinogenesis by the restoration of gut microbiota in a mice model. J Agric Food Chem 68:3506–3517

    Article  CAS  PubMed  Google Scholar 

  9. Hussain SA, Sulaiman AA, Balch C, Chauhan H, Alhadidi QM, Tiwari AK (2016) Natural polyphenols in cancer chemoresistance. Nutr Cancer 68:879–891

    Article  CAS  PubMed  Google Scholar 

  10. Melchini A, Costa C, Traka M, Miceli N, Mithen R, Pasquale RD, Trovato A (2009) Erucin, a new promising cancer chemopreventive agent from rocket salads, shows anti-proliferative activity on human lung carcinoma A549 cells. Food Chem Toxicol 47:1430–1436

    Article  CAS  PubMed  Google Scholar 

  11. de Oliveira Júnior RG, Raimundo AAFC, da Silva Almeida JRG, Rl G, Thiéry V, Picot L (2018) Sensitization of tumor cells to chemotherapy by natural products: a systematic review of preclinical data and molecular mechanisms. Fitoterapia 129:383–400

    Article  PubMed  Google Scholar 

  12. Li H, Krstin S, Wink M (2018) Modulation of multidrug resistant in cancer cells by EGCG, tannic acid and curcumin. Phytomedicine. https://doi.org/10.1016/j.phymed.2018.09.169

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zaki ERM, SafaaYehia E, Ali AA, Saeed A-AH, Thomas E, Michael W (2019) Resveratrol mediated cancer cell apoptosis, and modulation of multidrug resistance proteins and metabolic enzymes. Phytomedicine 55:269–281

    Article  Google Scholar 

  14. Lu Y, Shan S, Li H, Shi J, Li Z (2018) Reversal effects of bound polyphenol from foxtail millet bran on multi-drug resistance in human HCT-8/Fu colorectal cancer cell. J Agric Food Chem 66:5190–5199

    Article  CAS  PubMed  Google Scholar 

  15. Victor A (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  Google Scholar 

  16. Muhammad N, Bhattacharya S, Steele R, Ray RB (2016) Anti-miR-203 suppresses ER-positive breast cancer growth and stemness by targeting SOCS3. Oncotarget 7:58595–58605

    Article  PubMed  PubMed Central  Google Scholar 

  17. Strubberg AM, Madison BB (2017) MicroRNAs in the etiology of colorectal cancer: pathways and clinical implications. Dis Model Mech 10:197–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shin VY, Chu KM (2014) MiRNA as potential biomarkers and therapeutic targets for gastric cancer. World J Gastroenterol 20:10432–10439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu X, Li Z, Yu J, Chan MT, Wu WK (2015) MicroRNAs predict and modulate responses to chemotherapy in colorectal cancer. Cell Prolif 48:503–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Borralho PM, Kren BT, Castro RE, Moreira dS, Isabel B, Steer CJ, and Rodrigues CMP, (2009) MicroRNA-143 reduces viability and increases sensitivity to 5-fluorouracil in HCT116 human colorectal cancer cells. FEBS J 276:6689–6700

    Article  CAS  PubMed  Google Scholar 

  21. Karaayvaz M, Zhai H, Ju J (2013) miR-129 promotes apoptosis and enhances chemosensitivity to 5-fluorouracil in colorectal cancer. Cell Death Dis 4:e659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Debnath T, Deb Nath NC, Kim EK, Lee KG (2017) Role of phytochemicals in the modulation of miRNA expression in cancer. Food Funct 8:3432–3442

    Article  CAS  PubMed  Google Scholar 

  23. Wang F, Ma Y, Zhang P, Shen T, Shi C, Yang Y, Moyer M, Zhang H, Chen H, Liang Y (2013) SP1 mediates the link between methylation of the tumour suppressor miR-149 and outcome in colorectal cancer. J Pathol 229:12–24

    Article  CAS  PubMed  Google Scholar 

  24. Eyvazi S, Khamaneh AM, Tarhriz V, Bandehpour M, Hejazi MS, Sadat ATE, Sepehri B (2019) CpG islands methylation analysis of CDH11, EphA5, and HS3ST2 genes in gastric adenocarcinoma patients. J Gastrointest Cancer 51:579–583

    Article  Google Scholar 

  25. Shan S, Shi J, Yang P, Jia B, Wu H, Zhang X, Li Z (2017) Apigenin restrains colon cancer cell proliferation via targetedly blocking the PKM2-dependent Glycolysis. J Agric Food Chem 65:8136–8144

    Article  CAS  PubMed  Google Scholar 

  26. Holubekova V, Mendelova A, Jasek K, Mersakova S, Zubor P, Lasabova Z (2017) Epigenetic regulation by DNA methylation and miRNA molecules in cancer. Future Oncol 13:2217–2222

    Article  CAS  PubMed  Google Scholar 

  27. Mossman D, Kim KT, Scott RJ (2010) Demethylation by 5-aza-2'-deoxycytidine in colorectal cancer cells targets genomic DNA whilst promoter CpG island methylation persists. Bmc Cancer 10:366–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mohamed H, Hoeksema MD, Masakazu S, Jun Q, Harris BK, Heidi C, Clark JE, Alborn WE, Rosana E, Massion PP (2013) SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival. Clin Cancer Res 19:560–570

    Article  Google Scholar 

  29. Singh S, Chouhan S, Mohammad N, Bhat MK (2017) Resistin causes G1 arrest in colon cancer cells through upregulation of SOCS3. FEBS Lett 591:1371–1382

    Article  CAS  PubMed  Google Scholar 

  30. Shah MA, Schwartz GK (2001) Cell cycle-mediated drug resistance: an emerging concept in cancer therapy. Clin Cancer Res 7:2168–2181

    CAS  PubMed  Google Scholar 

  31. Hydbring P, Wang Y, Fassl A, Li X, Matia V, Otto T, Choi YJ, Sweeney KE, Suski JM, Yin H, Bogorad RL, Goel S, Yuzugullu H, Kauffman KJ, Yang J, Jin C, Li Y, Floris D, Swanson R, Ng K, Sicinska E, Anders L, Zhao JJ, Polyak K, Anderson DG, Li C, Sicinski P (2017) Cell-cycle-targeting microRNAs as therapeutic tools against refractory cancers. Cancer Cell 31:576–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu JS, Huo CY, Cao HH, Fan CL, Hu JY, Deng LJ, Lu ZB, Yang HY, Yu LZ, Mo ZX, Yu ZL (2019) Aloperine induces apoptosis and G2/M cell cycle arrest in hepatocellular carcinoma cells through the PI3K/Akt signaling pathway. Phytomedicine 61:152843

    Article  CAS  PubMed  Google Scholar 

  33. Shen Y, Bian R, Li Y, Gao Y, Liu Y, Xu Y, Song X, Zhang Y (2019) Liensinine induces gallbladder cancer apoptosis and G2/M arrest by inhibiting ZFX-induced PI3K/AKT pathway. Acta Biochim Biophys Sin (Shanghai) 51:607–614

    Article  CAS  Google Scholar 

  34. Singh M, Bhui K, Singh R, Shukla Y (2013) Tea polyphenols enhance cisplatin chemosensitivity in cervical cancer cells via induction of apoptosis. Life Sci 93:7–16

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, Kong D, Wang Z, Sarkar FH (2010) Regulation of microRNAs by natural agents: an emerging field in chemoprevention and chemotherapy research. Pharm Res 27:1027–1041

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fabbri M, Calore F, Paone A, Galli R, Calin GA (2013) Epigenetic regulation of miRNAs in cancer. Adv Exp Med Biol 754:137–148

    Article  CAS  PubMed  Google Scholar 

  37. Ferreira HJ, Holger H, Catia M, Manel E (2012) CpG island hypermethylation-associated silencing of small nucleolar RNAs in human cancer. RNA Biol 9:881–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pan MH, Lai CS, Wu JC, Ho CT (2013) Epigenetic and disease targets by polyphenols. Curr Pharm Des 19:6156–6185

    Article  CAS  PubMed  Google Scholar 

  39. Han L, Witmer PD, Casey E, Valle D, Sukumar S (2007) DNA methylation regulates MicroRNA expression. Cancer Biol Ther 6:1284–1288

    CAS  PubMed  Google Scholar 

  40. Ja P, Krajka-Kuniak V, Baer-Dubowska W (2010) The effect of dietary polyphenols on the epigenetic regulation of gene expression in MCF7 breast cancer cells. Toxicol Lett 192:119–125

    Article  Google Scholar 

  41. Shi J, Shan S, Li H, Song G, Li Z (2017) Anti-inflammatory effects of millet bran derived-bound polyphenols in LPS-induced HT-29 cell via ROS/miR-149/Akt/NF-κB signaling pathway. Oncotarget 8:74582–74594

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 31770382, 81803238), “1331 Project” Key Innovation Center and Team of Shanxi Province, Shanxi Province Science Foundation for Key Projects (No. 201801D111001), Shanxi Province Science Foundation for Youths (No. 201901D211143), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2019L0016), Shanxi Key Laboratory for Research and Development of Regional Plants, Collaborative Innovation Center of Quality and Efficiency of Loess Plateau Edible Fungi in Shanxi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuoyu Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, S., Lu, Y., Zhang, X. et al. Inhibitory effect of bound polyphenol from foxtail millet bran on miR-149 methylation increases the chemosensitivity of human colorectal cancer HCT-8/Fu cells. Mol Cell Biochem 476, 513–523 (2021). https://doi.org/10.1007/s11010-020-03906-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03906-4

Keywords

Navigation