Skip to main content

Advertisement

Log in

The emerging roles of circular RNAs in regulating the fate of stem cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Circular RNAs(circRNAs) are a large family of RNAs shaping covalently closed ring-like molecules and have become a hotspot with thousands of newly published studies. Stem cells are undifferentiated cells and have great potential in medical treatment due to their self-renewal ability and differentiation capacity. Abundant researches have unveiled that circRNAs have unique expression profile during the differentiation of stem cells and could serve as promising biomarkers of these cells. There are key circRNAs relevant to the differentiation, proliferation, and apoptosis of stem cells with certain mechanisms such as sponging miRNAs, interacting with proteins, and interfering mRNA translation. Moreover, several circRNAs have joined in the interplay between stem cells and lymphocytes. Our review will shed lights on the emerging roles of circRNAs in regulating the fate of diverse stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Suzuki H, Tsukahara T (2014) A view of pre-mRNA splicing from RNase R resistant RNAs. Int J Mol Sci 15(6):9331–9342. https://doi.org/10.3390/ijms15069331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK (1976) Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci 73:3852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cocquerelle C, Mascrez B, Hetuin D, Bailleul B (1993) Mis-splicing yields circular RNA molecules. FASEB J 7(1):155–160. https://doi.org/10.1096/fasebj.7.1.7678559

    Article  CAS  PubMed  Google Scholar 

  4. Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE 7(2):e30733. https://doi.org/10.1371/journal.pone.0030733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388. https://doi.org/10.1038/nature11993

    Article  CAS  PubMed  Google Scholar 

  6. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338. https://doi.org/10.1038/nature11928

    Article  CAS  PubMed  Google Scholar 

  7. Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu JZ, Marzluff WF, Sharpless NE (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats (vol 19, pg 141, 2013). RNA 19(3):426–426

    CAS  PubMed Central  Google Scholar 

  8. Guo JU, Agarwal V, Guo HL, Bartel DP (2014) Expanded identification and characterization of mammalian circular RNAs. Genome Biol 15(7):409. https://doi.org/10.1186/s13059-014-0409-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rybak-Wolf A, Stottmeister C, Glazar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R, Herzog M, Schreyer L, Papavasileiou P, Ivanov A, Ohman M, Refojo D, Kadener S, Rajewsky N (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58(5):870–885. https://doi.org/10.1016/j.molcel.2015.03.027

    Article  CAS  PubMed  Google Scholar 

  10. Liang DM, Wilusz JE (2014) Short intronic repeat sequences facilitate circular RNA production. Gene Dev 28(20):2233–2247. https://doi.org/10.1101/gad.251926.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA, Goodall GJ (2015) The RNA binding protein quaking regulates formation of circRNAs. Cell 160(6):1125–1134. https://doi.org/10.1016/j.cell.2015.02.014

    Article  CAS  PubMed  Google Scholar 

  12. Errichelli L, Dini Modigliani S, Laneve P, Colantoni A, Legnini I, Capauto D, Rosa A, De Santis R, Scarfo R, Peruzzi G, Lu L, Caffarelli E, Shneider NA, Morlando M, Bozzoni I (2017) FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nat Commun 8:14741. https://doi.org/10.1038/ncomms14741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ivanov A, Memczak S, Wyler E, Torti F, Porath HT, Orejuela MR, Piechotta M, Levanon EY, Landthaler M, Dieterich C, Rajewsky N (2015) Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep 10(2):170–177. https://doi.org/10.1016/j.celrep.2014.12.019

    Article  CAS  PubMed  Google Scholar 

  14. Holdt LM, Kohlmaier A, Teupser D (2018) Molecular roles and function of circular RNAs in eukaryotic cells. Cell Mol Life Sci 75(6):1071–1098. https://doi.org/10.1007/s00018-017-2688-5

    Article  CAS  PubMed  Google Scholar 

  15. Du WW, Yang WN, Liu E, Yang ZG, Dhaliwal P, Yang BB (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 44(6):2846–2858. https://doi.org/10.1093/nar/gkw027

    Article  PubMed  PubMed Central  Google Scholar 

  16. Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, Dudekula DB, De S, Kim J, Noh JH, Kim KM, Martindale JL, Gorospe M (2017) Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol 14(3):361–369. https://doi.org/10.1080/15476286.2017.1279788

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li ZY, Huang C, Bao C, Chen L, Lin M, Wang XL, Zhong GL, Yu B, Hu WC, Dai LM, Zhu PF, Chang ZX, Wu QF, Zhao Y, Jia Y, Xu P, Liu HJ, Shan G (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22(3):256–264. https://doi.org/10.1038/nsmb.2959

    Article  CAS  PubMed  Google Scholar 

  18. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S (2014) circRNA biogenesis competes with Pre-mRNA splicing. Mol Cell 56(1):55–66. https://doi.org/10.1016/j.molcel.2014.08.019

    Article  CAS  PubMed  Google Scholar 

  19. Starke S, Jost I, Rossbach O, Schneider T, Schreiner S, Hung LH, Bindereif A (2015) Exon circularization requires canonical splice signals. Cell Rep 10(1):103–111. https://doi.org/10.1016/j.celrep.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  20. Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, Laneve P, Rajewsky N, Bozzoni I (2017) Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell 66(1):22. https://doi.org/10.1016/j.molcel.2017.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang Y, Fan XJ, Mao MW, Song XW, Wu P, Zhang Y, Jin YF, Yang Y, Chen LL, Wang Y, Wong CCL, Xiao XS, Wang ZF (2017) Extensive translation of circular RNAs driven by N-6-methyladenosine. Cell Res 27(5):626–641. https://doi.org/10.1038/cr.2017.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez-Hernandez D, Ramberger E, Shenzis S, Samson M, Dittmar G, Landthaler M, Chekulaeva M, Rajewsky N, Kadener S (2017) Translation of CircRNAs. Mol Cell 66(1):9–21. https://doi.org/10.1016/j.molcel.2017.02.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang M, Zhao K, Xu X, Yang Y, Yan S, Wei P, Liu H, Xu J, Xiao F, Zhou H, Yang X, Huang N, Liu J, He K, Xie K, Zhang G, Huang S, Zhang N (2018) A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat Commun 9(1):4475. https://doi.org/10.1038/s41467-018-06862-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111. https://doi.org/10.1038/35102167

    Article  CAS  PubMed  Google Scholar 

  25. Marchese FP, Raimondi I, Huarte M (2017) The multidimensional mechanisms of long noncoding RNA function. Genome Biol 18:409. https://doi.org/10.1186/s13059-017-1348-2

    Article  CAS  Google Scholar 

  26. Wang PL, Bao Y, Yee MC, Barrett SP, Hogan GJ, Olsen MN, Dinneny JR, Brown PO, Salzman J (2014) Circular RNA is expressed across the eukaryotic tree of life. PLoS ONE 9(3):e90859. https://doi.org/10.1371/journal.pone.0090859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nicolet BP, Engels S, Aglialoro F, van den Akker E, von Lindern M, Wolkers MC (2018) Circular RNA expression in human hematopoietic cells is widespread and cell-type specific. Nucleic Acids Res 46(16):8168–8180. https://doi.org/10.1093/nar/gky721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Siede D, Rapti K, Gorska AA, Katus HA, Altmuller J, Boeckel JN, Meder B, Maack C, Volkers M, Muller OJ, Backs J, Dieterich C (2017) Identification of circular RNAs with host gene-independent expression in human model systems for cardiac differentiation and disease. J Mol Cell Cardiol 109:48–56. https://doi.org/10.1016/j.yjmcc.2017.06.015

    Article  CAS  PubMed  Google Scholar 

  29. Wang H, Feng C, Jin Y, Tan W, Wei F (2019) Identification and characterization of circular RNAs involved in mechanical force-induced periodontal ligament stem cells. J Cell Physiol 234(7):10166–10177. https://doi.org/10.1002/jcp.27686

    Article  CAS  PubMed  Google Scholar 

  30. Xie F, Zhao Y, Wang SD, Ma J, Wang X, Qian LJ (2019) Identification, characterization, and functional investigation of circular RNAs in subventricular zone of adult rat brain. J Cell Biochem 120(3):3428–3437. https://doi.org/10.1002/jcb.27614

    Article  CAS  PubMed  Google Scholar 

  31. Qian DY, Yan GB, Bai B, Chen Y, Zhang SJ, Yao YC, Xia H (2017) Differential circRNA expression profiles during the BMP2-induced osteogenic differentiation of MC3T3-E1 cells. Biomed Pharmacother 90:492–499. https://doi.org/10.1016/j.biopha.2017.03.051

    Article  CAS  PubMed  Google Scholar 

  32. Izuogu OG, Alhasan AA, Mellough C, Collin J, Gallon R, Hyslop J, Mastrorosa FK, Ehrmann I, Lako M, Elliott DJ, Santibanez-Koref M, Jackson MS (2018) Analysis of human ES cell differentiation establishes that the dominant isoforms of the lncRNAs RMST and FIRRE are circular. BMC Genomics 19(1):276. https://doi.org/10.1186/s12864-018-4660-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Panda AC, De S, Grammatikakis I, Munk R, Yang XL, Piao YL, Dudekula DB, Abdelmohsen K, Gorospe M (2017) High-purity circular RNA isolation method (RPAD) reveals vast collection of intronic circRNAs. Nucleic Acids Res 45(12):e116. https://doi.org/10.1093/nar/gkx297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Szabo L, Morey R, Palpant NJ, Wang PL, Afari N, Jiang C, Parast MM, Murry CE, Laurent LC, Salzman J (2015) Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol 16:126. https://doi.org/10.1186/s13059-015-0690-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Westholm JO, Miura P, Olson S, Shenker S, Joseph B, Sanfilippo P, Celniker SE, Graveley BR, Lai EC (2014) Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 9(5):1966–1980. https://doi.org/10.1016/j.celrep.2014.10.062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ng SY, Bogu GK, Soh BS, Stanton LW (2013) The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis. Mol Cell 51(3):349–359. https://doi.org/10.1016/j.molcel.2013.07.017

    Article  CAS  PubMed  Google Scholar 

  37. Sun L, Goff LA, Trapnell C, Alexander R, Lo KA, Hacisuleyman E, Sauvageau M, Tazon-Vega B, Kelley DR, Hendrickson DG, Yuan B, Kellis M, Lodish HF, Rinn JL (2013) Long noncoding RNAs regulate adipogenesis. Proc Natl Acad Sci USA 110(9):3387–3392. https://doi.org/10.1073/pnas.1222643110

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang MJ, Jia LF, Zheng YF (2019) circRNA expression profiles in human bone marrow stem cells undergoing osteoblast differentiation. Stem Cell Rev Rep 15(1):126–138. https://doi.org/10.1007/s12015-018-9841-x

    Article  CAS  PubMed  Google Scholar 

  39. Kang Y, Guo S, Sun Q, Zhang T, Liu J, He D (2020) Differential circular RNA expression profiling during osteogenic differentiation in human adipose-derived stem cells. Epigenomics 12(4):289–302. https://doi.org/10.2217/epi-2019-0218

    Article  CAS  PubMed  Google Scholar 

  40. Peng W, Zhu SX, Chen JL, Wang J, Rong Q, Chen SL (2019) Hsa_circRNA_33287 promotes the osteogenic differentiation of maxillary sinus membrane stem cells via miR-214-3p/Runx3. Biomed Pharmacother 109:1709–1717. https://doi.org/10.1016/j.biopha.2018.10.159

    Article  CAS  PubMed  Google Scholar 

  41. Gu X, Li M, Jin Y, Liu D, Wei F (2017) Identification and integrated analysis of differentially expressed lncRNAs and circRNAs reveal the potential ceRNA networks during PDLSC osteogenic differentiation. BMC Genet 18(1):100. https://doi.org/10.1186/s12863-017-0569-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zheng YF, Li XB, Huang YP, Jia LF, Li WR (2017) The circular RNA landscape of periodontal ligament stem cells during osteogenesis. J Periodontol 88(9):906–914. https://doi.org/10.1902/jop.2017.170078

    Article  CAS  PubMed  Google Scholar 

  43. Du Y, Li J, Hou Y, Chen C, Long W, Jiang H (2019) Alteration of circular RNA expression in rat dental follicle cells during osteogenic differentiation. J Cell Biochem. https://doi.org/10.1002/jcb.28603

    Article  PubMed  Google Scholar 

  44. Long T, Guo ZY, Han L, Yuan XY, Liu L, Jing W, Tian WD, Zheng XH, Tang W, Long J (2018) Differential expression profiles of circular RNAs during osteogenic differentiation of mouse adipose-derived stromal cells. Calcif Tissue Int 103(3):338–352. https://doi.org/10.1007/s00223-018-0426-0

    Article  CAS  PubMed  Google Scholar 

  45. Ren W, Yang L, Deng T, Wu C, Li Y, Wu J, Huang Z, Du F, Guo L (2019) Calcitonin generelated peptide regulates FOSL2 expression and cell proliferation of BMSCs via mmu_circRNA_003795. Mol Med Rep 19(5):3732–3742. https://doi.org/10.3892/mmr.2019.10038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lei W, Feng T, Fang X, Yu Y, Yang J, Zhao ZA, Liu J, Shen Z, Deng W, Hu S (2018) Signature of circular RNAs in human induced pluripotent stem cells and derived cardiomyocytes. Stem Cell Res Ther 9(1):56. https://doi.org/10.1186/s13287-018-0793-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ruan ZB, Chen GC, Ren Y, Zhu L (2018) Expression profile of long non-coding RNAs during the differentiation of human umbilical cord derived mesenchymal stem cells into cardiomyocyte-like cells. Cytotechnology 70(4):1247–1260. https://doi.org/10.1007/s10616-018-0217-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xia PY, Wang S, Ye BQ, Du Y, Li C, Xiong Z, Qu Y, Fan ZS (2018) A circular RNA protects dormant hematopoietic stem cells from DNA sensor cGAS-mediated exhaustion. Immunity 48(4):688. https://doi.org/10.1016/j.immuni.2018.03.016

    Article  CAS  PubMed  Google Scholar 

  49. Yang QC, Wu J, Zhao J, Xu TY, Zhao ZM, Song XF, Han P (2018) Circular RNA expression profiles during the differentiation of mouse neural stem cells. BMC Syst Biol 12:31–43. https://doi.org/10.1186/s12918-018-0651-1

    Article  CAS  Google Scholar 

  50. Kristensen LS, Okholm TLH, Veno MT, Kjems J (2018) Circular RNAs are abundantly expressed and upregulated during human epidermal stem cell differentiation. RNA Biol 15(2):280–291. https://doi.org/10.1080/15476286.2017.1409931

    Article  PubMed  Google Scholar 

  51. Tan WL, Lim BT, Anene-Nzelu CG, Ackers-Johnson M, Dashi A, See K, Tiang Z, Lee DP, Chua WW, Luu TD, Li PY, Richards AM, Foo RS (2017) A landscape of circular RNA expression in the human heart. Cardiovasc Res 113(3):298–309. https://doi.org/10.1093/cvr/cvw250

    Article  CAS  PubMed  Google Scholar 

  52. Aktas T, Ilik IA, Maticzka D, Bhardwaj V, Rodrigues CP, Mittler G, Manke T, Backofen R, Akhtar A (2017) DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome. Nature 544(7648):115. https://doi.org/10.1038/nature21715

    Article  CAS  PubMed  Google Scholar 

  53. Li XY, Peng BJ, Zhu XF, Wang PP, Xiong YQ, Liu HR, Sun KH, Wang HX, Ou L, Wu ZD, Liu XG, He HB, Mo S, Peng XQ, Tian Y, Zhang RH, Yang L (2017) Changes in related circular RNAs following ER beta knockdown and the relationship to rBMSC osteogenesis. Biochem Biophys Res Co 493(1):100–107. https://doi.org/10.1016/j.bbrc.2017.09.068

    Article  CAS  Google Scholar 

  54. Sun BL, Shi L, Shi Q, Jiang Y, Su ZY, Yang XQ, Zhang YQ (2018) Circular RNAs are abundantly expressed and upregulated during repair of the damaged endometrium by Wharton's jelly-derived mesenchymal stem cells. Stem Cell Res Ther 9:1–13. https://doi.org/10.1186/s13287-018-1046-3

    Article  CAS  Google Scholar 

  55. Liu RF, Chang WJ, Li J, Cheng YA, Dang EL, Yang XH, Wang Q, Wang G, Li XH, Zhang KM (2019) Mesenchymal stem cells in psoriatic lesions affect the skin microenvironment through circular RNA. Exp Dermatol 28(3):292–299. https://doi.org/10.1111/exd.13890

    Article  CAS  PubMed  Google Scholar 

  56. Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32(5):453–461. https://doi.org/10.1038/nbt.2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Meng SJ, Zhou HC, Feng ZY, Xu ZH, Tang Y, Li PY, Wu MH (2017) CircRNA: functions and properties of a novel potential biomarker for cancer. Mol Cancer 16:1–8. https://doi.org/10.1186/s12943-017-0663-2

    Article  CAS  Google Scholar 

  58. Tang W, Fu K, Sun H, Rong D, Wang H, Cao H (2018) CircRNA microarray profiling identifies a novel circulating biomarker for detection of gastric cancer. Mol Cancer 17(1):137. https://doi.org/10.1186/s12943-018-0888-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cherubini A, Barilani M, Rossi RL, Jalal MMK, Rusconi F, Buono G, Ragni E, Cantarella G, Simpson H, Peault B, Lazzari L (2019) FOXP1 circular RNA sustains mesenchymal stem cell identity via microRNA inhibition. Nucleic Acids Res. https://doi.org/10.1093/nar/gkz199

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yu CY, Li TC, Wu YY, Yeh CH, Chiang W, Chuang CY, Kuo HC (2017) The circular RNA circBIRC6 participates in the molecular circuitry controlling human pluripotency. Nat Commun 8:1–15. https://doi.org/10.1038/s41467-017-01216-w

    Article  CAS  Google Scholar 

  61. Choi YJ, Lin CP, Ho JJ, He XY, Okada N, Bu PC, Zhong YC, Kim SY, Bennett MJ, Chen CF, Ozturk A, Hicks GG, Hannon GJ, He L (2011) miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nat Cell Biol 13(11):1353–U1154. https://doi.org/10.1038/ncb2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Buganim Y, Markoulaki S, van Wietmarschen N, Hoke H, Wu T, Ganz K, Akhtar-Zaidi B, He Y, Abraham BJ, Porubsky D, Kulenkampff E, Faddah DA, Shi L, Gao Q, Sarkar S, Cohen M, Goldmann J, Nery JR, Schultz MD, Ecker JR, Xiao A, Young RA, Lansdorp PM, Jaenisch R (2014) The developmental potential of iPSCs is greatly influenced by reprogramming factor selection. Cell Stem Cell 15(3):295–309. https://doi.org/10.1016/j.stem.2014.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhu PP, Zhu XX, Wu JY, He LY, Lu TK, Wang YY, Liu BY, Ye BQ, Sun L, Fan DD, Wang J, Yang LL, Qin XW, Du Y, Li C, He L, Ren WZ, Wu X, Tian Y, Fan ZS (2019) IL-13 secreted by ILC2s promotes the self-renewal of intestinal stem cells through circular RNA circPan3. Nat Immunol 20(2):183. https://doi.org/10.1038/s41590-018-0297-6

    Article  CAS  PubMed  Google Scholar 

  64. Bilkovski R, Schulte DM, Oberhauser F, Gomolka M, Udelhoven M, Hettich MM, Roth B, Heidenreich A, Gutschow C, Krone W, Laudes M (2010) Role of WNT-5a in the determination of human mesenchymal stem cells into preadipocytes. J Biol Chem 285(9):6170–6178. https://doi.org/10.1074/jbc.M109.054338

    Article  CAS  PubMed  Google Scholar 

  65. Chandra A, Lan SH, Zhu J, Siclari VA, Qin L (2013) Epidermal growth factor receptor (EGFR) signaling promotes proliferation and survival in osteoprogenitors by increasing early growth response 2 (EGR2) expression. J Biol Chem 288(28):20488–20498. https://doi.org/10.1074/jbc.M112.447250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang YH, Li ML, Wang YH, Liu J, Zhang ML, Fang XT, Chen H, Zhang CL (2019) A Zfp609 circular RNA regulates myoblast differentiation by sponging miR-194-5p. Int J Biol Macromol 121:1308–1313. https://doi.org/10.1016/j.ijbiomac.2018.09.039

    Article  CAS  PubMed  Google Scholar 

  67. Ouyang HJ, Chen XL, Li WM, Li ZH, Nie QH, Zhang XQ (2018) Circular RNA circSVIL promotes myoblast proliferation and differentiation by sponging miR-203 in chicken. Front Genet 9:172. https://doi.org/10.3389/fgene.2018.00172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen XL, Ouyang HJ, Wang ZJ, Chen BA, Nie QH (2018) A novel circular RNA generated by FGFR2 gene promotes myoblast proliferation and differentiation by sponging miR-133a-5p and miR-29b-1-5p. Cells-Basel 7(11):199. https://doi.org/10.3390/cells7110199

    Article  CAS  Google Scholar 

  69. Li H, Wei XF, Yang JM, Dong D, Hao D, Huang YZ, Lan XY, Plath M, Lei CZ, Ma Y, Lin FP, Bai YY, Chen H (2018) circFGFR4 Promotes differentiation of myoblasts via binding miR-107 to relieve its inhibition of Wnt3a. Mol Ther-Nucl Acids 11:272–283. https://doi.org/10.1016/j.omtn.2018.02.012

    Article  CAS  Google Scholar 

  70. Li H, Yang JM, Wei XF, Song CC, Dong D, Huang YZ, Lan XY, Plath M, Lei CZ, Ma Y, Qi XL, Bai YY, Chen H (2018) CircFUT10 reduces proliferation and facilitates differentiation of myoblasts by sponging miR-133a. J Cell Physiol 233(6):4643–4651. https://doi.org/10.1002/jcp.26230

    Article  CAS  PubMed  Google Scholar 

  71. Wei X, Li H, Yang J, Hao D, Dong D, Huang Y, Lan X, Plath M, Lei C, Lin F, Bai Y, Chen H (2017) Circular RNA profiling reveals an abundant circLMO7 that regulates myoblasts differentiation and survival by sponging miR-378a-3p. Cell Death Dis 8(10):e3153. https://doi.org/10.1038/cddis.2017.541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li X, Zheng Y, Zheng Y, Huang Y, Zhang Y, Jia L, Li W (2018) Circular RNA CDR1as regulates osteoblastic differentiation of periodontal ligament stem cells via the miR-7/GDF5/SMAD and p38 MAPK signaling pathway. Stem Cell Res Ther 9(1):232. https://doi.org/10.1186/s13287-018-0976-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang L, Bin Z, Hui S, Rong L, You B, Wu P, Han X, Qian H, Xu W (2019) The role of CDR1as in proliferation and differentiation of human umbilical cord-derived mesenchymal stem cells. Stem Cells Int 2019:2316834. https://doi.org/10.1155/2019/2316834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen G, Wang Q, Li Z, Yang Q, Liu Y, Du Z, Zhang G, Song Y (2020) Circular RNA CDR1as promotes adipogenic and suppresses osteogenic differentiation of BMSCs in steroid-induced osteonecrosis of the femoral head. Bone 133:115258. https://doi.org/10.1016/j.bone.2020.115258

    Article  CAS  PubMed  Google Scholar 

  75. Li L, Chen Y, Nie L, Ding X, Zhang X, Zhao W, Xu X, Kyei B, Dai D, Zhan S, Guo J, Zhong T, Wang L, Zhang H (2019) MyoD-induced circular RNA CDR1as promotes myogenic differentiation of skeletal muscle satellite cells. Biochim Biophys Acta Gene Regul Mech 1862 8:807–821. https://doi.org/10.1016/j.bbagrm.2019.07.001

    Article  CAS  Google Scholar 

  76. Dell'Aversana C, Giorgio C, D'Amato L, Lania G, Matarese F, Saeed S, Di Costanzo A, Petrizzi VB, Ingenito C, Martens JHA, Pallavicini I, Minucci S, Carissimo A, Stunnenberg HG, Altucci L (2017) miR-194-5p/BCLAF1 deregulation in AML tumorigenesis. Leukemia 31(11):2315–2325. https://doi.org/10.1038/leu.2017.64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Luo W, Wu H, Ye Y, Li Z, Hao S, Kong L, Zheng X, Lin S, Nie Q, Zhang X (2014) The transient expression of miR-203 and its inhibiting effects on skeletal muscle cell proliferation and differentiation. Cell Death Dis 5:e1347. https://doi.org/10.1038/cddis.2014.289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wei W, He HB, Zhang WY, Zhang HX, Bai JB, Liu HZ, Cao JH, Chang KC, Li XY, Zhao SH (2013) miR-29 targets Akt3 to reduce proliferation and facilitate differentiation of myoblasts in skeletal muscle development. Cell Death Dis 4:e668. https://doi.org/10.1038/cddis.2013.184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Luo YQ, Wu XX, Ling ZX, Yuan L, Cheng YW, Chen JY, Xiang C (2015) microRNA133a targets Foxl2 and promotes differentiation of C2C12 into myogenic progenitor cells. DNA Cell Biol 34(1):29–36. https://doi.org/10.1089/dna.2014.2522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yao S, He H, Gutierrez DL, Rad MR, Liu D, Li C, Flanagan M, Wise GE (2013) Expression of bone morphogenetic protein-6 in dental follicle stem cells and its effect on osteogenic differentiation. Cells Tissues Organs 198(6):438–447. https://doi.org/10.1159/000360275

    Article  CAS  PubMed  Google Scholar 

  81. Li S, Czubryt MP, McAnally J, Bassel-Duby R, Richardson JA, Wiebel FF, Nordheim A, Olson EN (2005) Requirement for serum response factor for skeletal muscle growth and maturation revealed by tissue-specific gene deletion in mice. Proc Natl Acad Sci USA 102(4):1082–1087. https://doi.org/10.1073/pnas.0409103102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wei XF, Li H, Zhang BW, Li CX, Dong D, Lan XY, Huang YZ, Bai YY, Lin FP, Zhao X, Chen H (2016) miR-378a-3p promotes differentiation and inhibits proliferation of myoblasts by targeting HDAC4 in skeletal muscle development. RNA Biol 13(12):1300–1309. https://doi.org/10.1080/15476286.2016.1239008

    Article  PubMed  PubMed Central  Google Scholar 

  83. Xu H, Guo S, Li W, Yu P (2015) The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci Rep 5:12453. https://doi.org/10.1038/srep12453

    Article  PubMed  PubMed Central  Google Scholar 

  84. Piwecka M, Glazar P, Hernandez-Miranda LR, Memczak S, Wolf SA, Rybak-Wolf A, Filipchyk A, Klironomos F, Cerda Jara CA, Fenske P, Trimbuch T, Zywitza V, Plass M, Schreyer L, Ayoub S, Kocks C, Kuhn R, Rosenmund C, Birchmeier C, Rajewsky N (2017) Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science. https://doi.org/10.1126/science.aam8526

    Article  PubMed  Google Scholar 

  85. Kleaveland B, Shi CY, Stefano J, Bartel DP (2018) A network of noncoding regulatory RNAs acts in the mammalian brain. Cell 174(2):350–362. https://doi.org/10.1016/j.cell.2018.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hanniford D, Ulloa-Morales A, Karz A, Berzoti-Coelho MG, Moubarak RS, Sanchez-Sendra B, Kloetgen A, Davalos V, Imig J, Wu P, Vasudevaraja V, Argibay D, Lilja K, Tabaglio T, Monteagudo C, Guccione E, Tsirigos A, Osman I, Aifantis I, Hernando E (2020) Epigenetic silencing of CDR1as drives IGF2BP3-mediated melanoma invasion and metastasis. Cancer Cell 37(1):55–70. https://doi.org/10.1016/j.ccell.2019.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Galvin CD, Hardiman O, Nolan CM (2003) IGF-1 receptor mediates differentiation of primary cultures of mouse skeletal myoblasts. Mol Cell Endocrinol 200(1–2):19–29. https://doi.org/10.1016/s0303-7207(02)00420-3

    Article  CAS  PubMed  Google Scholar 

  88. Berkes CA, Tapscott SJ (2005) MyoD and the transcriptional control of myogenesis. Semin Cell Dev Biol 16(4–5):585–595. https://doi.org/10.1016/j.semcdb.2005.07.006

    Article  CAS  PubMed  Google Scholar 

  89. van Tienen FH, Laeremans H, van der Kallen CJ, Smeets HJ (2009) Wnt5b stimulates adipogenesis by activating PPARgamma, and inhibiting the beta-catenin dependent Wnt signaling pathway together with Wnt5a. Biochem Biophys Res Commun 387(1):207–211. https://doi.org/10.1016/j.bbrc.2009.07.004

    Article  CAS  PubMed  Google Scholar 

  90. Sun T, Li CT, Xiong L, Ning Z, Leung F, Peng S, Lu WW (2017) miR-375-3p negatively regulates osteogenesis by targeting and decreasing the expression levels of LRP5 and beta-catenin. PLoS ONE 12(2):e0171281. https://doi.org/10.1371/journal.pone.0171281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang Y, Feng Q, Ji C, Liu X, Li L, Luo J (2017) RUNX3 plays an important role in mediating the BMP9-induced osteogenic differentiation of mesenchymal stem cells. Int J Mol Med 40(6):1991–1999. https://doi.org/10.3892/ijmm.2017.3155

    Article  CAS  PubMed  Google Scholar 

  92. Zhao RB, Li YS, Lin ZY, Wan J, Xu C, Zeng Y, Zhu Y (2016) miR-199b-5p modulates BMSC osteogenesis via suppressing GSK-3 beta/beta-catenin signaling pathway. Biochem Bioph Res Commun 477(4):749–754. https://doi.org/10.1016/j.bbrc.2016.06.130

    Article  CAS  Google Scholar 

  93. Huang J, Zhao L, Xing L, Chen D (2010) MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells 28(2):357–364. https://doi.org/10.1002/stem.288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Han N, Zhang F, Li G, Zhang X, Lin X, Yang H, Wang L, Cao Y, Du J, Fan Z (2017) Local application of IGFBP5 protein enhanced periodontal tissue regeneration via increasing the migration, cell proliferation and osteo/dentinogenic differentiation of mesenchymal stem cells in an inflammatory niche. Stem Cell Res Ther 8(1):210. https://doi.org/10.1186/s13287-017-0663-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38(2):228–233. https://doi.org/10.1038/ng1725

    Article  CAS  PubMed  Google Scholar 

  96. Wang Y, Zhang J, Li J, Gui R, Nie X, Huang R (2019) CircRNA_014511 affects the radiosensitivity of bone marrow mesenchymal stem cells by binding to miR-29b-2-5p. Bosn J Basic Med Sci 19:155. https://doi.org/10.17305/bjbms.2019.3935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang F, Chen X, Han Y, Xi S, Wu G (2019) circRNA CDR1as regulated the proliferation of human periodontal ligament stem cells under a lipopolysaccharide-induced inflammatory condition. Mediat Inflamm 2019:1625381. https://doi.org/10.1155/2019/1625381

    Article  CAS  Google Scholar 

  98. Mi B, Xiong Y, Chen L, Yan C, Endo Y, Liu Y, Liu J, Hu L, Hu Y, Sun Y, Cao F, Zhou W, Liu G (2019) CircRNA AFF4 promotes osteoblast cells proliferation and inhibits apoptosis via the Mir-7223-5p/PIK3R1 axis. Aging (Albany NY) 11(24):11988–12001. https://doi.org/10.18632/aging.102524

    Article  CAS  Google Scholar 

  99. Shang J, Yao Y, Fan X, Shangguan L, Li J, Liu H, Zhou Y (2016) miR-29c-3p promotes senescence of human mesenchymal stem cells by targeting CNOT6 through p53–p21 and p16-pRB pathways. Biochim Biophys Acta 1863 4:520–532. https://doi.org/10.1016/j.bbamcr.2016.01.005

    Article  CAS  Google Scholar 

  100. Kriegs M, Gurtner K, Can Y, Brammer I, Rieckmann T, Oertel RD, Wysocki M, Dorniok F, Gal A, Grob TJ, Laban S, Kasten-Pisula U, Petersen C, Baumann M, Krause M, Dikomey E (2015) Radiosensitization of NSCLC cells by EGFR inhibition is the result of an enhanced p53-dependent G1 arrest. Radiother Oncol 115(1):120–127. https://doi.org/10.1016/j.radonc.2015.02.018

    Article  CAS  PubMed  Google Scholar 

  101. Liang W, Zhuo XL, Tang ZF, Wei XM, Li B (2015) Calcitonin gene-related peptide stimulates proliferation and osteogenic differentiation of osteoporotic rat-derived bone mesenchymal stem cells. Mol Cell Biochem 402(1–2):101–110. https://doi.org/10.1007/s11010-014-2318-6

    Article  CAS  PubMed  Google Scholar 

  102. Jahangiri L, Sharpe M, Novikov N, Gonzalez-Rosa JM, Borikova A, Nevis K, Paffett-Lugassy N, Zhao L, Adams M, Guner-Ataman B, Burns CE, Burns CG (2016) The AP-1 transcription factor component Fosl2 potentiates the rate of myocardial differentiation from the zebrafish second heart field. Development 143(1):113–122. https://doi.org/10.1242/dev.126136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jain S, Darveau RP (2010) Contribution of Porphyromonas gingivalis lipopolysaccharide to periodontitis. Periodontology 54(1):53–70. https://doi.org/10.1111/j.1600-0757.2009.00333.x

    Article  Google Scholar 

  104. Costa C, Engelman JA (2014) The double life of p85. Cancer Cell 26(4):445–447. https://doi.org/10.1016/j.ccell.2014.09.011

    Article  CAS  PubMed  Google Scholar 

  105. Ho L, Tan SY, Wee S, Wu Y, Tan SJ, Ramakrishna NB, Chng SC, Nama S, Szczerbinska I, Chan YS, Avery S, Tsuneyoshi N, Ng HH, Gunaratne J, Dunn NR, Reversade B (2015) ELABELA is an endogenous growth factor that sustains hESC elf-renewal via the PI3K/AKT pathway. Cell Stem Cell 17(4):435–447. https://doi.org/10.1016/j.stem.2015.08.010

    Article  CAS  PubMed  Google Scholar 

  106. Lee JH, Liu R, Li J, Wang Y, Tan L, Li XJ, Qian X, Zhang C, Xia Y, Xu D, Guo W, Ding Z, Du L, Zheng Y, Chen Q, Lorenzi PL, Mills GB, Jiang T, Lu Z (2018) EGFR-phosphorylated platelet isoform of phosphofructokinase 1 promotes PI3K activation. Mol Cell 70(2):197–210. https://doi.org/10.1016/j.molcel.2018.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rossi L, Lin KK, Boles NC, Yang L, King KY, Jeong M, Mayle A, Goodell MA (2012) Less is more: unveiling the functional core of hematopoietic stem cells through knockout mice. Cell Stem Cell 11(3):302–317. https://doi.org/10.1016/j.stem.2012.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Xia PY, Wang S, Gao P, Gao GX, Fan ZS (2016) DNA sensor cGAS-mediated immune recognition. Protein Cell 7(11):777–791. https://doi.org/10.1007/s13238-016-0320-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Crow Y, Hayward BE, Parmar R, Robins P, Leitch A, Lebon P, Bonthron DT, Jackson AP, Barnes DE, Lindahl T (2006) Mutations in the gene encoding the 3 -> 5 prime DNA exonuclease TREXI1 cause Aicardi-Goutieres syndrome at the AGS1 locus. J Med Genet 43:S16–S16

    Google Scholar 

  110. Gao D, Li T, Li XD, Chen X, Li QZ, Wight-Carter M, Chen ZJ (2015) Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proc Natl Acad Sci USA 112(42):E5699–5705. https://doi.org/10.1073/pnas.1516465112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Morrison SJ, Spradling AC (2008) Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132(4):598–611. https://doi.org/10.1016/j.cell.2008.01.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–U147. https://doi.org/10.1038/nature07935

    Article  CAS  PubMed  Google Scholar 

  113. Artis D, Spits H (2015) The biology of innate lymphoid cells. Nature 517(7534):293–301. https://doi.org/10.1038/nature14189

    Article  CAS  PubMed  Google Scholar 

  114. Wynn TA (2015) Type 2 cytokines: mechanisms and therapeutic strategies. Nat Rev Immunol 15(5):271–282. https://doi.org/10.1038/nri3831

    Article  CAS  PubMed  Google Scholar 

  115. Gherzi R, Lee KY, Briata P, Wegmuller D, Moroni C, Karin M, Chen CY (2004) A KH domain RNA binding protein, KSRP, promotes ARE-directed mRNA turnover by recruiting the degradation machinery. Mol Cell 14(5):571–583. https://doi.org/10.1016/j.molcel.2004.05.002

    Article  CAS  PubMed  Google Scholar 

  116. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99(10):3838–3843. https://doi.org/10.1182/blood.v99.10.3838

    Article  PubMed  Google Scholar 

  117. Lowes MA, Suarez-Farinas M, Krueger JG (2014) Immunology of psoriasis. Annu Rev Immunol 32:227–255. https://doi.org/10.1146/annurev-immunol-032713-120225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Liu R, Wang Y, Zhao X, Yang Y, Zhang K (2014) Lymphocyte inhibition is compromised in mesenchymal stem cells from psoriatic skin. Eur J Dermatol 24(5):560–567. https://doi.org/10.1684/ejd.2014.2394

    Article  CAS  PubMed  Google Scholar 

  119. Beck B, Blanpain C (2013) Unravelling cancer stem cell potential. Nat Rev Cancer 13(10):727–738. https://doi.org/10.1038/nrc3597

    Article  CAS  PubMed  Google Scholar 

  120. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367(6464):645–648. https://doi.org/10.1038/367645a0

    Article  CAS  PubMed  Google Scholar 

  121. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401. https://doi.org/10.1038/nature03128

    Article  CAS  PubMed  Google Scholar 

  122. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445(7123):111–115. https://doi.org/10.1038/nature05384

    Article  CAS  PubMed  Google Scholar 

  123. Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C, De Maria R (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15(3):504–514. https://doi.org/10.1038/sj.cdd.4402283

    Article  CAS  PubMed  Google Scholar 

  124. Ou CY, Kim JH, Yang CK, Stallcup MR (2009) Requirement of cell cycle and apoptosis regulator 1 for target gene activation by Wnt and beta-catenin and for anchorage-independent growth of human colon carcinoma cells. J Biol Chem 284(31):20629–20637. https://doi.org/10.1074/jbc.M109.014332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhu YJ, Zheng B, Luo GJ, Ma XK, Lu XY, Lin XM, Yang S, Zhao Q, Wu T, Li ZX, Liu XL, Wu R, Liu JF, Ge Y, Yang L, Wang HY, Chen L (2019) Circular RNAs negatively regulate cancer stem cells by physically binding FMRP against CCAR1 complex in hepatocellular carcinoma. Theranostics 9(12):3526–3540. https://doi.org/10.7150/thno.32796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chen L, Kong R, Wu C, Wang S, Liu Z, Liu S, Li S, Chen T, Mao C, Liu S (2020) Circ-MALAT1 functions as both an mRNA translation brake and a microRNA sponge to promote self-renewal of hepatocellular cancer stem cells. Adv Sci (Weinh) 7(4):1900949. https://doi.org/10.1002/advs.201900949

    Article  CAS  Google Scholar 

  127. Yan N, Xu H, Zhang J, Xu L, Zhang Y, Zhang L, Xu Y, Zhang F (2017) Circular RNA profile indicates circular RNA VRK1 is negatively related with breast cancer stem cells. Oncotarget 8(56):95704–95718. https://doi.org/10.18632/oncotarget.21183

    Article  PubMed  PubMed Central  Google Scholar 

  128. Wu Y, Zhang Y, Niu M, Shi Y, Liu H, Yang D, Li F, Lu Y, Bo Y, Zhang R, Li Z, Luo H, Cui J, Sang J, Xiang C, Gao W, Wen S (2018) Whole-transcriptome analysis of CD133+CD144+ cancer stem cells derived from human laryngeal squamous cell carcinoma cells. Cell Physiol Biochem 47(4):1696–1710. https://doi.org/10.1159/000490992

    Article  CAS  PubMed  Google Scholar 

  129. Takashima S, Martin ML, Jansen SA, Fu Y, Bos J, Chandra D, O'Connor MH, Mertelsmann AM, Vinci P, Kuttiyara J, Devlin SM, Middendorp S, Calafiore M, Egorova A, Kleppe M, Lo Y, Shroyer NF, Cheng EH, Levine RL, Liu C, Kolesnick R, Lindemans CA, Hanash AM (2019) T cell-derived interferon-gamma programs stem cell death in immune-mediated intestinal damage. Sci Immunol. https://doi.org/10.1126/sciimmunol.aay8556

    Article  PubMed  PubMed Central  Google Scholar 

  130. Wobma HM, Tamargo MA, Goeta S, Brown LM, Duran-Struuck R, Vunjak-Novakovic G (2018) The influence of hypoxia and IFN-gamma on the proteome and metabolome of therapeutic mesenchymal stem cells. Biomaterials 167:226–234. https://doi.org/10.1016/j.biomaterials.2018.03.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Liu M, Wang Q, Shen J, Yang BB, Ding X (2019) Circbank: a comprehensive database for circRNA with standard nomenclature. RNA Biol. https://doi.org/10.1080/15476286.2019.1600395

    Article  PubMed  PubMed Central  Google Scholar 

  132. Stein CA, Castanotto D (2017) FDA-approved oligonucleotide therapies in 2017. Mol Ther 25(5):1069–1075. https://doi.org/10.1016/j.ymthe.2017.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Al Shaer D, Al Musaimi O, Albericio F, de la Torre BG (2019) 2018 FDA tides harvest. Pharmaceuticals (Basel). https://doi.org/10.3390/ph12020052

    Article  Google Scholar 

  134. Huang S, Li X, Zheng H, Si X, Li B, Wei G, Li C, Chen Y, Chen Y, Liao W, Liao Y, Bin J (2019) Loss of super-enhancer-regulated CircRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.118.038361

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by grants from the National Natural Science Foundation of China (No. 81700938, 81670957, and 81772876) and the Beijing Natural Science Foundation (No. 7172239).

Author information

Authors and Affiliations

Authors

Contributions

ZZ drafted the paper, performed the literature search, and analyzed data. LJ had the idea for the article. YZ and WL revised the paper and contributed equally to this manuscript.

Corresponding author

Correspondence to Yunfei Zheng.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, Z., Jia, L., Li, W. et al. The emerging roles of circular RNAs in regulating the fate of stem cells. Mol Cell Biochem 476, 231–246 (2021). https://doi.org/10.1007/s11010-020-03900-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03900-w

Keywords

Navigation