Skip to main content

Advertisement

Log in

Epigenetic memory: gene writer, eraser and homocysteine

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Naturally chromatin remodeling is highly organized, consisting of histone acetylation (opening/relaxation of the compact chromatin structure), DNA methylation (inhibition of the gene expression activity) and sequence rearrangement by shifting. All this is essentially required for proper “in-printing and off-printing” of genes thus ensuring the epigenetic memory process. Any imbalance in ratios of DNA methyltransferase (DNMT, gene writer), fat-mass obesity-associated protein (FTO, gene eraser) and product (function) homocysteine (Hcy) could lead to numerous diseases. Interestingly, a similar process also happens in stem cells during embryogenesis and development. Despite gigantic unsuccessful efforts undertaken thus far toward the conversion of a stem cell into a functional cardiomyocyte, there has been hardly any study that shows successful conversion of a stem cell into a multinucleated cardiomyocyte. We have shown nuclear hypertrophy during heart failure, however; the mechanism(s) of epigenetic memory, regulation of genes during fertilization, embryogenesis, development and during adulthood remain far from understanding. In addition, there may be a connection of aging, loosing of the memory leading to death, and presumably to reincarnation. This review highlights some of these pertinent issues facing the discipline of biology as a whole today.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DAAM:

Disheveled-associated activator of morphogenesis

DNMT:

DNA methyltransferase

FTO:

Fat-mass obesity-associated protein

Hcy:

Homocysteine

Met:

Methionine

mTORC1:

Mechanistic target of rapamycin complex 1

NLRP3:

Nod-Like Receptor (NLR) Family Pyrin Domain Containing 3

PC:

Phosphatidylcholine

PCP:

Phosphatidylcholine phosphatase

PE:

Phosphatidylethanolamine

PEMT:

Phosphatidylethanolamine methyltransferase

REDD1:

Regulated in development DNA damage response 1

SAHH:

S-adenosine homocysteine hydrolase

SAM:

S-adenosine methionine; SAH

S-adenosine homocysteine:

TLR4, toll-like receptor-4

References

  1. Yajnik CS, Chandak GR, Joglekar C, Katre P, Bhat DS, Singh SN, Janipalli CS, Refsum H, Krishnaveni G, Veena S, Osmond C, Fall CH (2014) Maternal homocysteine in pregnancy and offspring birthweight: epidemiological associations and Mendelian randomization analysis. Int J Epidemiol 43:1487–1497. https://doi.org/10.1093/ije/dyu132

    Article  PubMed  PubMed Central  Google Scholar 

  2. George AK, Master K, Majumder A, Homme RP, Laha A, Sandhu HS, Tyagi SC, Singh M (2019) Circular RNAs constitute an inherent gene regulatory axis in the mammalian eye and brain (1). Can J Physiol Pharmacol 97:463–472. https://doi.org/10.1139/cjpp-2018-0505

    Article  CAS  PubMed  Google Scholar 

  3. Singh M, George AK, Homme RP, Majumder A, Laha A, Sandhu HS, Tyagi SC (2018) Circular RNAs profiling in the cystathionine-beta-synthase mutant mouse reveals novel gene targets for hyperhomocysteinemia induced ocular disorders. Exp Eye Res 174:80–92. https://doi.org/10.1016/j.exer.2018.05.026

    Article  CAS  PubMed  Google Scholar 

  4. Singh M, George AK, Homme RP, Majumder A, Laha A, Sandhu HS, Tyagi SC (2019) Expression Analysis of the Circular RNA Molecules in the Human Retinal Cells Treated with Homocysteine. Curr Eye Res 44:287–293. https://doi.org/10.1080/02713683.2018.1542005

    Article  CAS  PubMed  Google Scholar 

  5. D'Urso A, Brickner JH (2014) Mechanisms of epigenetic memory. Trends Genet 30:230–236. https://doi.org/10.1016/j.tig.2014.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Calvanese V, Fraga MF (2012) Epigenetics of embryonic stem cells. Adv Exp Med Biol 741:231–253. https://doi.org/10.1007/978-1-4614-2098-9_16

    Article  CAS  PubMed  Google Scholar 

  7. Sendzikaite G, Hanna CW, Stewart-Morgan KR, Ivanova E, Kelsey G (2019) A DNMT3A PWWP mutation leads to methylation of bivalent chromatin and growth retardation in mice. Nat Commun 10:1884. https://doi.org/10.1038/s41467-019-09713-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mathiyalagan P, Adamiak M, Mayourian J, Sassi Y, Liang Y, Agarwal N, Jha D, Zhang S, Kohlbrenner E, Chepurko E, Chen J, Trivieri MG, Singh R, Bouchareb R, Fish K, Ishikawa K, Lebeche D, Hajjar RJ, Sahoo S (2019) FTO-Dependent N(6)-Methyladenosine Regulates Cardiac Function During Remodeling and Repair. Circulation 139:518–532. https://doi.org/10.1161/circulationaha.118.033794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McCully KS (1971) Homocysteine metabolism in scurvy, growth and arteriosclerosis. Nature 231:391–392. https://doi.org/10.1038/231391a0

    Article  CAS  PubMed  Google Scholar 

  10. McCully KS, Clopath P (1977) Homocysteine compounds which influence the growth of a malignant neoplasm. Chemotherapy 23:44–49. https://doi.org/10.1159/000221970

    Article  CAS  PubMed  Google Scholar 

  11. Ishii I, Akahoshi N, Yamada H, Nakano S, Izumi T, Suematsu M (2010) Cystathionine gamma-Lyase-deficient mice require dietary cysteine to protect against acute lethal myopathy and oxidative injury. J Biol Chem 285:26358–26368. https://doi.org/10.1074/jbc.M110.147439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Veeranki S, Tyagi SC (2013) Defective homocysteine metabolism: potential implications for skeletal muscle malfunction. Int J Mol Sci 14:15074–15091. https://doi.org/10.3390/ijms140715074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wong YY, Almeida OP, McCaul KA, Yeap BB, Hankey GJ, Flicker L (2013) Homocysteine, frailty, and all-cause mortality in older men: the health in men study. J Gerontol A Biol Sci Med Sci 68:590–598. https://doi.org/10.1093/gerona/gls211

    Article  CAS  PubMed  Google Scholar 

  14. Sweetser DA, Lin AE, Troulis MJ, Chen TC, Westra SJ (2016) Case 34–2016. A 17-Year-Old Boy with Myopia and Craniofacial and Skeletal Abnormalities. N Engl J Med 375:1879–1890. https://doi.org/10.1056/NEJMcpc1610096

    Article  PubMed  Google Scholar 

  15. Keller R, Chrastina P, Pavlikova M, Gouveia S, Ribes A, Kolker S, Blom HJ, Baumgartner MR, Bartl J, Dionisi-Vici C, Gleich F, Morris AA, Kozich V, Huemer M, Baric I, Ben-Omran T, Blasco-Alonso J, Bueno Delgado MA, Carducci C, Cassanello M, Cerone R, Couce ML, Crushell E, Delgado Pecellin C, Dulin E, Espada M, Ferino G, Fingerhut R, Garcia Jimenez I, Gonzalez Gallego I, Gonzalez-Irazabal Y, Gramer G, Juan Fita MJ, Karg E, Klein J, Konstantopoulou V, la Marca G, Leao Teles E, Leuzzi V, Lilliu F, Lopez RM, Lund AM, Mayne P, Meavilla S, Moat SJ, Okun JG, Pasquini E, Pedron-Giner CC, Racz GZ, Ruiz Gomez MA, Vilarinho L, Yahyaoui R, Zerjav Tansek M, Zetterstrom RH, Zeyda M (2019) Newborn screening for homocystinurias: Recent recommendations versus current practice. J Inherit Metab Dis 42:128–139. https://doi.org/10.1002/jimd.12034

    Article  CAS  PubMed  Google Scholar 

  16. George AK, Singh M, Pushpakumar S, Homme RP, Hardin SJ, Tyagi SC (2020) Dysbiotic 1-carbon metabolism in cardiac muscle remodeling. J Cell Physiol 235:2590–2598. https://doi.org/10.1002/jcp.29163

    Article  CAS  PubMed  Google Scholar 

  17. Veeranki S, Tyagi SC (2017) Dysbiosis and Disease: Many Unknown Ends, Is It Time to Formulate Guidelines for Dysbiosis Research? J Cell Physiol 232:2929–2930. https://doi.org/10.1002/jcp.25719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dees C, Potter S, Zhang Y, Bergmann C, Zhou X, Luber M, Wohlfahrt T, Karouzakis E, Ramming A, Gelse K, Yoshimura A, Jaenisch R, Distler O, Schett G, Distler JH (2020) TGF-beta-induced epigenetic deregulation of SOCS3 facilitates STAT3 signaling to promote fibrosis. J Clin Invest 130:2347–2363. https://doi.org/10.1172/jci122462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Felisbino MB, McKinsey TA (2018) Epigenetics in Cardiac Fibrosis: Emphasis on Inflammation and Fibroblast Activation. JACC Basic Transl Sci 3:704–715. https://doi.org/10.1016/j.jacbts.2018.05.003

    Article  PubMed  PubMed Central  Google Scholar 

  20. Stratton MS, Bagchi RA, Felisbino MB, Hirsch RA, Smith HE, Riching AS, Enyart BY, Koch KA, Cavasin MA, Alexanian M, Song K, Qi J, Lemieux ME, Srivastava D, Lam MPY, Haldar SM, Lin CY, McKinsey TA (2019) Dynamic Chromatin Targeting of BRD4 Stimulates Cardiac Fibroblast Activation. Circ Res 125:662–677. https://doi.org/10.1161/circresaha.119.315125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tyagi SC (1998) Homocysteine redox receptor and regulation of extracellular matrix components in vascular cells. Am J Physiol 274:C396–405. https://doi.org/10.1152/ajpcell.1998.274.2.C396

    Article  CAS  PubMed  Google Scholar 

  22. Sen U, Moshal KS, Tyagi N, Kartha GK, Tyagi SC (2006) Homocysteine-induced myofibroblast differentiation in mouse aortic endothelial cells. J Cell Physiol 209:767–774. https://doi.org/10.1002/jcp.20752

    Article  CAS  PubMed  Google Scholar 

  23. George AK, Homme RP, Majumder A, Laha A, Metreveli N, Sandhu HS, Tyagi SC, Singh M (2019) Hydrogen sulfide intervention in cystathionine-beta-synthase mutant mouse helps restore ocular homeostasis. Int J Ophthalmol 12:754–764. https://doi.org/10.18240/ijo.2019.05.09

    Article  PubMed  PubMed Central  Google Scholar 

  24. George AK, Majumder A, Ice H, Homme RP, Eyob W, Tyagi SC, Singh M (2020) Genes and genetics in hyperhomocysteinemia and the "1-carbon metabolism": implications for retinal structure and eye functions. Can J Physiol Pharmacol 98:51–60. https://doi.org/10.1139/cjpp-2019-0236

    Article  CAS  PubMed  Google Scholar 

  25. Camp TM, Tyagi SC, Aru GM, Hayden MR, Mehta JL, Tyagi SC (2004) Doxycycline ameliorates ischemic and border-zone remodeling and endothelial dysfunction after myocardial infarction in rats. J Heart Lung Transplant 23:729–736. https://doi.org/10.1016/j.healun.2003.06.005

    Article  PubMed  Google Scholar 

  26. Tyagi SC, Kumar SG, Haas SJ, Reddy HK, Voelker DJ, Hayden MR, Demmy TL, Schmaltz RA, Curtis JJ (1996) Post-transcriptional regulation of extracellular matrix metalloproteinase in human heart end-stage failure secondary to ischemic cardiomyopathy. J Mol Cell Cardiol 28:1415–1428. https://doi.org/10.1006/jmcc.1996.0132

    Article  CAS  PubMed  Google Scholar 

  27. Cox MJ, Sood HS, Hunt MJ, Chandler D, Henegar JR, Aru GM, Tyagi SC (2002) Apoptosis in the left ventricle of chronic volume overload causes endocardial endothelial dysfunction in rats. Am J Physiol Heart Circ Physiol 282:H1197–H1205. https://doi.org/10.1152/ajpheart.00483.2001

    Article  CAS  PubMed  Google Scholar 

  28. Zhou L, Xiao X, Zhang Q, Zheng J, Li M, Deng M (2019) A Possible Mechanism: Genistein Improves Metabolism and Induces White Fat Browning Through Modulating Hypothalamic Expression of Ucn3, Depp, and Stc1. Front Endocrinol (Lausanne) 10:478. https://doi.org/10.3389/fendo.2019.00478

    Article  Google Scholar 

  29. Ducker GS, Rabinowitz JD (2017) One-Carbon metabolism in health and disease. Cell Metab 25:27–42. https://doi.org/10.1016/j.cmet.2016.08.009

    Article  CAS  PubMed  Google Scholar 

  30. Gordon BS, Steiner JL, Williamson DL, Lang CH, Kimball SR (2016) Emerging role for regulated in development and DNA damage 1 (REDD1) in the regulation of skeletal muscle metabolism. Am J Physiol Endocrinol Metab 311:E157–E174. https://doi.org/10.1152/ajpendo.00059.2016

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ajima R, Bisson JA, Helt JC, Nakaya MA, Habas R, Tessarollo L, He X, Morrisey EE, Yamaguchi TP, Cohen ED (2015) DAAM1 and DAAM2 are co-required for myocardial maturation and sarcomere assembly. Dev Biol 408:126–139. https://doi.org/10.1016/j.ydbio.2015.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hayasaka M, Tsunekawa H, Yoshinaga M, Murakami T (2014) Endurance exercise induces REDD1 expression and transiently decreases mTORC1 signaling in rat skeletal muscle. Physiol Rep. https://doi.org/10.14814/phy2.12254

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ronkainen J, Huusko TJ, Soininen R, Mondini E, Cinti F, Makela KA, Kovalainen M, Herzig KH, Jarvelin MR, Sebert S, Savolainen MJ, Salonurmi T (2015) Fat mass- and obesity-associated gene Fto affects the dietary response in mouse white adipose tissue. Sci Rep 5:9233. https://doi.org/10.1038/srep09233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Qi L, Kang K, Zhang C, van Dam RM, Kraft P, Hunter D, Lee CH, Hu FB (2008) Fat mass-and obesity-associated (FTO) gene variant is associated with obesity: longitudinal analyses in two cohort studies and functional test. Diabetes 57:3145–3151. https://doi.org/10.2337/db08-0006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hess ME, Bruning JC (2014) The fat mass and obesity-associated (FTO) gene: Obesity and beyond? Biochim Biophys Acta 1842:2039–2047. https://doi.org/10.1016/j.bbadis.2014.01.017

    Article  CAS  PubMed  Google Scholar 

  36. Tyagi SC, Kumar S, Voelker DJ, Reddy HK, Janicki JS, Curtis JJ (1996) Differential gene expression of extracellular matrix components in dilated cardiomyopathy. J Cell Biochem 63:185–198. https://doi.org/10.1002/(sici)1097-4644(19961101)63:2<185:aid-jcb6>3.0.co;2-u

    Article  CAS  PubMed  Google Scholar 

  37. Berdasco M, Esteller M (2011) DNA methylation in stem cell renewal and multipotency. Stem Cell Res Ther 2:42. https://doi.org/10.1186/scrt83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all members of the laboratory for their continued help, and excellent support. Part of this study was supported by NIH grants AR-71789, HL139047, and DK116591.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahavir Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyagi, S.C., Stanisic, D. & Singh, M. Epigenetic memory: gene writer, eraser and homocysteine. Mol Cell Biochem 476, 507–512 (2021). https://doi.org/10.1007/s11010-020-03895-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03895-4

Keywords

Navigation