Skip to main content
Log in

Crosstalk between Noxa, Bcl-2, and ceramide in mediating p53-dependent apoptosis in Molt-4 human T-cell leukemia

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Ionizing radiation induces apoptosis in human Molt-4 leukemia cells in a p53-dependent manner. The tumor suppressor p53 stimulates various downstream targets that presumably trigger, individually or in concert, de novo ceramide synthesis and intrinsic apoptosis via mitochondrial outer membrane permeabilization (MOMP). Among these targets, BH3-only protein Noxa was found to be promptly activated by p53 prior to ceramide accumulation and apoptosis in response to irradiation. To evaluate the relation between Noxa and ceramide in irradiation-induced apoptosis, Noxa was silenced in Molt-4 cells and apoptosis, p53 expression, and ceramide accumulation were assessed in response to irradiation. In the absence of Noxa, irradiation of Molt-4 cells still induced apoptosis in a p53-dependent manner however ceramide levels decreased significantly although they remained higher than untreated control. Upon irradiation, Noxa was found to translocate to the mitochondria where endogenous ceramide accumulation was observed. In contrast, overexpression of Bcl-2, another mitochondrial protein, in Molt-4 cells abolished the endogenous ceramide accumulation and apoptosis. In irradiation-induced, p53-dependent pathways of apoptosis, the pro-apoptotic Noxa represents one of several, yet to be identified, pathways simultaneously triggered by p53 to produce mitochondrial ceramide accumulation and apoptosis. In contrast, Bcl-2 functions as a broader inhibitor of both ceramide accumulation and apoptosis. Altogether, these results indicate that members of the Bcl-2 family differentially regulate ceramide accumulation and reveal the existence of crosstalk between Bcl-2 family members and ceramide in mediating p53-dependent apoptosis in Molt-4 human T-cell leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516. https://doi.org/10.1080/01926230701320337

    Article  CAS  PubMed  Google Scholar 

  2. Morad SA, Cabot MC (2013) Ceramide-orchestrated signalling in cancer cells. Nat Rev Cancer 13(1):51–65. https://doi.org/10.1038/nrc3398

    Article  CAS  PubMed  Google Scholar 

  3. Campaner S, Spreafico F, Burgold T, Doni M, Rosato U, Amati B, Testa G (2011) The methyltransferase Set7/9 (Setd7) is dispensable for the p53-mediated DNA damage response in vivo. Mol Cell 43(4):681–688. https://doi.org/10.1016/j.molcel.2011.08.007

    Article  CAS  PubMed  Google Scholar 

  4. Dbaibo GS, Pushkareva MY, Rachid RA, Alter N, Smyth MJ, Obeid LM, Hannun YA (1998) p53-dependent ceramide response to genotoxic stress. J Clin Invest 102(2):329–339. https://doi.org/10.1172/JCI1180

    Article  CAS  PubMed  Google Scholar 

  5. Sharpe JC, Arnoult D, Youle RJ (2004) Control of mitochondrial permeability by Bcl-2 family members. Biochim Biophys Acta 1644(2–3):107–113. https://doi.org/10.1016/j.bbamcr.2003.10.016

    Article  CAS  PubMed  Google Scholar 

  6. Villunger A, Michalak EM, Coultas L, Mullauer F, Bock G, Ausserlechner MJ, Adams JM, Strasser A (2003) p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 302(5647):1036–1038. https://doi.org/10.1126/science.1090072

    Article  CAS  Google Scholar 

  7. Leber B, Lin J, Andrews DW (2010) Still embedded together binding to membranes regulates Bcl-2 protein interactions. Oncogene 29(38):5221–5230. https://doi.org/10.1038/onc.2010.283

    Article  CAS  PubMed  Google Scholar 

  8. Lindsten T, Thompson CB (2006) Cell death in the absence of Bax and Bak. Cell Death Differ 13(8):1272–1276. https://doi.org/10.1038/sj.cdd.4401953

    Article  CAS  PubMed  Google Scholar 

  9. Shamas-Din A, Bindner S, Chi X, Leber B, Andrews DW, Fradin C (2015) Distinct lipid effects on tBid and Bim activation of membrane permeabilization by pro-apoptotic Bax. Biochem J 467(3):495–505. https://doi.org/10.1042/BJ20141291

    Article  CAS  PubMed  Google Scholar 

  10. Vela L, Gonzalo O, Naval J, Marzo I (2013) Direct interaction of Bax and Bak proteins with Bcl-2 homology domain 3 (BH3)-only proteins in living cells revealed by fluorescence complementation. J Biol Chem 288(7):4935–4946. https://doi.org/10.1074/jbc.M112.422204

    Article  CAS  PubMed  Google Scholar 

  11. Colombini M (2017) Ceramide channels and mitochondrial outer membrane permeability. J Bioenerg Biomembr 49(1):57–64. https://doi.org/10.1007/s10863-016-9646-z

    Article  CAS  PubMed  Google Scholar 

  12. Bionda C, Portoukalian J, Schmitt D, Rodriguez-Lafrasse C, Ardail D (2004) Subcellular compartmentalization of ceramide metabolism: MAM (mitochondria-associated membrane) and/or mitochondria? Biochem J 382(Pt 2):527–533. https://doi.org/10.1042/BJ20031819

    Article  CAS  PubMed  Google Scholar 

  13. Perera MN, Lin SH, Peterson YK, Bielawska A, Szulc ZM, Bittman R, Colombini M (2012) Bax and Bcl-xL exert their regulation on different sites of the ceramide channel. Biochem J 445(1):81–91. https://doi.org/10.1042/BJ20112103

    Article  CAS  PubMed  Google Scholar 

  14. Panjarian S, Kozhaya L, Arayssi S, Yehia M, Bielawski J, Bielawska A, Usta J, Hannun YA, Obeid LM, Dbaibo GS (2008) De novo N-palmitoylsphingosine synthesis is the major biochemical mechanism of ceramide accumulation following p53 up-regulation. Prostaglandins Other Lipid Mediat 86(1–4):41–48. https://doi.org/10.1016/j.prostaglandins.2008.02.004

    Article  CAS  PubMed  Google Scholar 

  15. Hage-Sleiman R, Bahmad H, Kobeissy H, Dakdouk Z, Kobeissy F, Dbaibo G (2017) Genomic alterations during p53-dependent apoptosis induced by gamma-irradiation of Molt-4 leukemia cells. PLoS ONE 12(12):e0190221. https://doi.org/10.1371/journal.pone.0190221

    Article  CAS  PubMed  Google Scholar 

  16. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917. https://doi.org/10.1139/o59-099

    Article  CAS  PubMed  Google Scholar 

  17. Rouser G, Fkeischer S, Yamamoto A (1970) Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5(5):494–496

    Article  CAS  Google Scholar 

  18. Preiss J, Loomis CR, Bishop WR, Stein R, Niedel JE, Bell RM (1986) Quantitative measurement of sn-1,2-diacylglycerols present in platelets, hepatocytes, and ras- and sis-transformed normal rat kidney cells. J Biol Chem 261(19):8597–8600

    CAS  Google Scholar 

  19. Wieckowski MR, Giorgi C, Lebiedzinska M, Duszynski J, Pinton P (2009) Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. Nat Protoc 4(11):1582–1590. https://doi.org/10.1038/nprot.2009.151

    Article  CAS  PubMed  Google Scholar 

  20. El-Assaad W, Kozhaya L, Araysi S, Panjarian S, Bitar FF, Baz E, El-Sabban ME, Dbaibo GS (2003) Ceramide and glutathione define two independently regulated pathways of cell death initiated by p53 in Molt-4 leukaemia cells. Biochem J 376(Pt 3):725–732. https://doi.org/10.1042/BJ20030888

    Article  CAS  PubMed  Google Scholar 

  21. Morsi RZ, Hage-Sleiman R, Kobeissy H, Dbaibo G (2018) Noxa: Role in Cancer Pathogenesis and Treatment. Curr Cancer Drug Targets 18(10):914–928. https://doi.org/10.2174/1568009618666180308105048

    Article  CAS  PubMed  Google Scholar 

  22. Ramirez-Camacho I, Bautista-Perez R, Correa F, Buelna-Chontal M, Roman-Anguiano NG, Medel-Franco M, Medina-Campos ON, Pedraza-Chaverri J, Cano-Martinez A (1862) Zazueta C (2016) Role of sphingomyelinase in mitochondrial ceramide accumulation during reperfusion. Biochim Biophys Acta 10:1955–1963. https://doi.org/10.1016/j.bbadis.2016.07.021

    Article  CAS  Google Scholar 

  23. Law BA, Liao X, Moore KS, Southard A, Roddy P, Ji R, Szulc Z, Bielawska A, Schulze PC, Cowart LA (2018) Lipotoxic very-long-chain ceramides cause mitochondrial dysfunction, oxidative stress, and cell death in cardiomyocytes. FASEB J 32(3):1403–1416. https://doi.org/10.1096/fj.201700300R

    Article  CAS  PubMed  Google Scholar 

  24. Siskind LJ, Kolesnick RN, Colombini M (2002) Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins. J Biol Chem 277(30):26796–26803. https://doi.org/10.1074/jbc.M200754200

    Article  CAS  PubMed  Google Scholar 

  25. Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288(5468):1053–1058

    Article  CAS  PubMed  Google Scholar 

  26. Hoeferlin LA, Fekry B, Ogretmen B, Krupenko SA, Krupenko NI (2013) Folate stress induces apoptosis via p53-dependent de novo ceramide synthesis and up-regulation of ceramide synthase 6. J Biol Chem 288(18):12880–12890. https://doi.org/10.1074/jbc.M113.461798

    Article  CAS  PubMed  Google Scholar 

  27. Sawada M, Nakashima S, Banno Y, Yamakawa H, Takenaka K, Shinoda J, Nishimura Y, Sakai N, Nozawa Y (2000) Influence of Bax or Bcl-2 overexpression on the ceramide-dependent apoptotic pathway in glioma cells. Oncogene 19(31):3508–3520. https://doi.org/10.1038/sj.onc.1203699

    Article  CAS  PubMed  Google Scholar 

  28. Ploner C, Kofler R, Villunger A (2008) Noxa: at the tip of the balance between life and death. Oncogene 27(Suppl 1):S84–92. https://doi.org/10.1038/onc.2009.46

    Article  CAS  PubMed  Google Scholar 

  29. Huang B, Vassilev LT (2009) Reduced transcriptional activity in the p53 pathway of senescent cells revealed by the MDM2 antagonist nutlin-3. Aging (Albany NY) 1(10):845–854. https://doi.org/10.18632/aging.100091

    Article  CAS  Google Scholar 

  30. Laviad EL, Kelly S, Merrill AH Jr, Futerman AH (2012) Modulation of ceramide synthase activity via dimerization. J Biol Chem 287(25):21025–21033. https://doi.org/10.1074/jbc.M112.363580

    Article  CAS  PubMed  Google Scholar 

  31. Jain A, Beutel O, Ebell K, Korneev S, Holthuis JC (2017) Diverting CERT-mediated ceramide transport to mitochondria triggers Bax-dependent apoptosis. J Cell Sci 130(2):360–371. https://doi.org/10.1242/jcs.194191

    Article  CAS  PubMed  Google Scholar 

  32. Bezombes C, Maestre N, Laurent G, Levade T, Bettaieb A, Jaffrezou JP (1998) Restoration of TNF-alpha-induced ceramide generation and apoptosis in resistant human leukemia KG1a cells by the P-glycoprotein blocker PSC833. FASEB J 12(1):101–109

    CAS  PubMed  Google Scholar 

  33. Dbaibo GS, El-Assaad W, Krikorian A, Liu B, Diab K, Idriss NZ, El-Sabban M, Driscoll TA, Perry DK, Hannun YA (2001) Ceramide generation by two distinct pathways in tumor necrosis factor alpha-induced cell death. FEBS Lett 503(1):7–12. https://doi.org/10.1016/s0014-5793(01)02625-4

    Article  CAS  PubMed  Google Scholar 

  34. Seo YW, Shin JN, Ko KH, Cha JH, Park JY, Lee BR, Yun CW, Kim YM, Seol DW, Kim DW, Yin XM, Kim TH (2003) The molecular mechanism of Noxa-induced mitochondrial dysfunction in p53-mediated cell death. J Biol Chem 278(48):48292–48299. https://doi.org/10.1074/jbc.M308785200

    Article  CAS  PubMed  Google Scholar 

  35. Dai H, Smith A, Meng XW, Schneider PA, Pang YP, Kaufmann SH (2011) Transient binding of an activator BH3 domain to the Bak BH3-binding groove initiates Bak oligomerization. J Cell Biol 194(1):39–48. https://doi.org/10.1083/jcb.201102027

    Article  CAS  PubMed  Google Scholar 

  36. Kim JY, An YM, Choi WH, Kim JM, Cho S, Yoo BR, Kang JW, Lee YS, Lee YJ, Cho J (2017) Pro-apoptotic Noxa is involved in ablative focal irradiation-induced lung injury. J Cell Mol Med 21(4):711–719. https://doi.org/10.1111/jcmm.13014

    Article  CAS  PubMed  Google Scholar 

  37. Krajewski S, Tanaka S, Takayama S, Schibler MJ, Fenton W, Reed JC (1993) Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res 53(19):4701–4714

    CAS  PubMed  Google Scholar 

  38. Janiak F, Leber B, Andrews DW (1994) Assembly of Bcl-2 into microsomal and outer mitochondrial membranes. J Biol Chem 269(13):9842–9849

    CAS  Google Scholar 

  39. Thomenius MJ, Wang NS, Reineks EZ, Wang Z, Distelhorst CW (2003) Bcl-2 on the endoplasmic reticulum regulates Bax activity by binding to BH3-only proteins. J Biol Chem 278(8):6243–6250. https://doi.org/10.1074/jbc.M208878200

    Article  CAS  Google Scholar 

  40. Smith AJ, Dai H, Correia C, Takahashi R, Lee SH, Schmitz I, Kaufmann SH (2011) Noxa/Bcl-2 protein interactions contribute to bortezomib resistance in human lymphoid cells. J Biol Chem 286(20):17682–17692. https://doi.org/10.1074/jbc.M110.189092

    Article  CAS  PubMed  Google Scholar 

  41. Allouche M, Bettaieb A, Vindis C, Rousse A, Grignon C, Laurent G (1997) Influence of Bcl-2 overexpression on the ceramide pathway in daunorubicin-induced apoptosis of leukemic cells. Oncogene 14(15):1837–1845. https://doi.org/10.1038/sj.onc.1201023

    Article  CAS  PubMed  Google Scholar 

  42. Dbaibo GS, Perry DK, Gamard CJ, Platt R, Poirier GG, Obeid LM, Hannun YA (1997) Cytokine response modifier A (CrmA) inhibits ceramide formation in response to tumor necrosis factor (TNF)-alpha: CrmA and Bcl-2 target distinct components in the apoptotic pathway. J Exp Med 185(3):481–490. https://doi.org/10.1084/jem.185.3.481

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by funding from the Medical Practice Plan (MPP) at AUB-FM and the Lebanese National Center for Scientific Research (LNCSR) to GD. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

RHS and GD conceived and designed the project. HK, ZD and LK performed the experiments. HK and RHS analyzed the results. HK and RHS drafted the manuscript. RHS and GD revised and finalized the manuscript which was read and approved by all authors.

Corresponding authors

Correspondence to Rouba Hage-Sleiman or Ghassan Dbaibo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobeissy, H., Hage-Sleiman, R., Dakdouk, Z. et al. Crosstalk between Noxa, Bcl-2, and ceramide in mediating p53-dependent apoptosis in Molt-4 human T-cell leukemia. Mol Cell Biochem 475, 215–226 (2020). https://doi.org/10.1007/s11010-020-03874-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03874-9

Keywords

Navigation