Skip to main content

Advertisement

Log in

LncRNA LEF1-AS1 promotes osteogenic differentiation of dental pulp stem cells via sponging miR-24-3p

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The role of lncRNA LEF1-AS1 in the regulation of osteogenic differentiation of dental pulp stem cells (DPSCs) is still obscure. Here, we demonstrated that LncRNA LEF1-AS1 expression was associated with osteogenic differentiation of DPSCs and overexpression of LEF1-AS1 promoted osteogenic differentiation. Moreover, lncRNA LEF1-AS1 and miR-24-3p could directly regulate each other and LEF1-AS1 acted as sponge partner of miR-24-3p. Furthermore, LEF1-AS1 and miR-24-3p synergized to regulate osteogenic differentiation of DPSCs. Finally, we verified TGFBR1 was the direct target of miR-24-3p in osteogenic differentiation of DPSCs and miR-24-3p/LEF1-AS1 sponged to regulate TGFBR1 expression. Our study revealed a novel mechanism about how did lncRNA LEF1-AS1 execute function in osteogenesis of DPSCs and thus might serve as potential therapeutic target for the bone regeneration in the dental pulp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors declare that all data are available.

References

  1. Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81:531–535. https://doi.org/10.1177/154405910208100806

    Article  CAS  PubMed  Google Scholar 

  2. Howard C, Murray PE, Namerow KN (2010) Dental pulp stem cell migration. J Endod 36:1963–1966. https://doi.org/10.1016/j.joen.2010.08.046

    Article  PubMed  Google Scholar 

  3. Ferro F, Spelat R, Baheney CS (2014) Dental pulp stem cell (DPSC) isolation, characterization, and differentiation. Methods Mol Biol 1210:91–115. https://doi.org/10.1007/978-1-4939-1435-7_8

    Article  PubMed  Google Scholar 

  4. Didilescu AC, Rusu MC, Nini G (2013) Dental pulp as a stem cell reservoir. Rom J Morphol Embryol 54:473–478

    PubMed  Google Scholar 

  5. Aliaghaei A, Boroujeni ME, Ahmadi H, Bayat AH, Tavirani MR, Abdollahifar MA, Pooyafar MH, Mansouri V (2019) Dental pulp stem cell transplantation ameliorates motor function and prevents cerebellar atrophy in rat model of cerebellar ataxia. Cell Tissue Res 376:179–187. https://doi.org/10.1007/s00441-018-02980-x

    Article  PubMed  Google Scholar 

  6. Alraies A, Canetta E, Waddington RJ, Moseley R, Sloan AJ (2019) Discrimination of dental pulp stem cell regenerative heterogeneity by single-cell raman spectroscopy. Tissue Eng Part C Methods 25:489–499. https://doi.org/10.1089/ten.TEC.2019.0129

    Article  CAS  PubMed  Google Scholar 

  7. Ballini A, De Frenza G, Cantore S, Papa F, Grano M, Mastrangelo F, Tete S, Grassi FR (2007) In vitro stem cell cultures from human dental pulp and periodontal ligament: new prospects in dentistry. Int J Immunopathol Pharmacol 20:9–16. https://doi.org/10.1177/039463200702000102

    Article  CAS  PubMed  Google Scholar 

  8. Yuan H, Zhao H, Wang J, Zhang H, Hong L, Li H, Che H, Zhang Z (2018) MicroRNA let-7c-5p promotes osteogenic differentiation of dental pulp stem cells by inhibiting lipopolysaccharide-induced inflammation via HMGA2/PI3K/Akt signal blockade. Clin Exp Pharmacol Physiol. https://doi.org/10.1111/1440-1681.13059

    Article  Google Scholar 

  9. Takimoto K, Kawashima N, Suzuki N, Koizumi Y, Yamamoto M, Nakashima M, Suda H (2014) Down-regulation of inflammatory mediator synthesis and infiltration of inflammatory cells by MMP-3 in experimentally induced rat pulpitis. J Endod 40:1404–1409. https://doi.org/10.1016/j.joen.2014.04.001

    Article  PubMed  Google Scholar 

  10. Hofmann P, Sommer J, Theodorou K, Kirchhof L, Fischer A, Li Y, Perisic L, Hedin U, Maegdefessel L, Dimmeler S, Boon RA (2019) Long non-coding RNA H19 regulates endothelial cell aging via inhibition of STAT3 signalling. Cardiovasc Res 115:230–242. https://doi.org/10.1093/cvr/cvy206

    Article  CAS  PubMed  Google Scholar 

  11. Vemuganti R (2013) All's well that transcribes well: non-coding RNAs and post-stroke brain damage. Neurochem Int 63:438–449. https://doi.org/10.1016/j.neuint.2013.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yin KJ, Hamblin M, Chen YE (2014) Non-coding RNAs in cerebral endothelial pathophysiology: emerging roles in stroke. Neurochem Int 77:9–16. https://doi.org/10.1016/j.neuint.2014.03.013

    Article  CAS  PubMed  Google Scholar 

  13. Chen X, Fan S, Song E (2016) Noncoding RNAs: new players in cancers. Adv Exp Med Biol 927:1–47. https://doi.org/10.1007/978-981-10-1498-7_1

    Article  CAS  PubMed  Google Scholar 

  14. Martens-Uzunova ES, Bottcher R, Croce CM, Jenster G, Visakorpi T, Calin GA (2014) Long noncoding RNA in prostate, bladder, and kidney cancer. Eur Urol 65:1140–1151. https://doi.org/10.1016/j.eururo.2013.12.003

    Article  CAS  PubMed  Google Scholar 

  15. Wang J, Liu X, Yan C, Liu J, Wang S, Hong Y, Gu A, Zhao P (2017) LEF1-AS1, a long-noncoding RNA, promotes malignancy in glioblastoma. Onco Targets Ther 10:4251–4260. https://doi.org/10.2147/OTT.S130365

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang A, Zhao C, Gao Y, Duan G, Yang Y, Fan B, Wang X, Wang K (2019) LEF1-AS1 contributes to proliferation and invasion through regulating miR-544a/ FOXP1 axis in lung cancer. Invest New Drugs 37:1127–1134. https://doi.org/10.1007/s10637-018-00721-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang J, Lin X, Jiang W, Wu J, Lin L (2019) lncRNA LEF1-AS1 promotes malignancy in non-small-cell lung cancer by modulating the miR-489/SOX4 Axis. DNA Cell Biol 38:1013–1021. https://doi.org/10.1089/dna.2019.4717

    Article  CAS  PubMed  Google Scholar 

  18. Zhang C, Bao C, Zhang X, Lin X, Pan D, Chen Y (2019) Knockdown of lncRNA LEF1-AS1 inhibited the progression of oral squamous cell carcinoma (OSCC) via Hippo signaling pathway. Cancer Biol Ther 20:1213–1222. https://doi.org/10.1080/15384047.2019.1599671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355. https://doi.org/10.1038/nature02871

    Article  CAS  PubMed  Google Scholar 

  20. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. https://doi.org/10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jung HM, Hu CT, Fister AM, Davis AE, Castranova D, Pham VN, Price LM, Weinstein BM (2019) MicroRNA-mediated control of developmental lymphangiogenesis. Elife. https://doi.org/10.7554/eLife.46007

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liu X, Zheng J, Xue Y, Yu H, Gong W, Wang P, Li Z, Liu Y (2018) PIWIL3/OIP5-AS1/miR-367-3p/CEBPA feedback loop regulates the biological behavior of glioma cells. Theranostics 8:1084–1105. https://doi.org/10.7150/thno.21740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yi T (2018) Identifying RISC components using Ago2 immunoprecipitation and mass spectrometry. Methods Mol Biol 1720:149–159. https://doi.org/10.1007/978-1-4939-7540-2_11

    Article  CAS  PubMed  Google Scholar 

  24. Karamzadeh R, Eslaminejad MB, Aflatoonian R (2012) Isolation, characterization and comparative differentiation of human dental pulp stem cells derived from permanent teeth by using two different methods. J Vis Exp. https://doi.org/10.3791/4372

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pisciotta A, Carnevale G, Meloni S, Riccio M, De Biasi S, Gibellini L, Ferrari A, Bruzzesi G, De Pol A (2015) Human dental pulp stem cells (hDPSCs): isolation, enrichment and comparative differentiation of two sub-populations. BMC Dev Biol 15:14. https://doi.org/10.1186/s12861-015-0065-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work received no specific funding. We thank the First Affiliated Hospital of Xi’an Jiaotong University for the capital and equipment support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Sun.

Ethics declarations

Conflict of interest

The authors declare that no competing interests exist.

Informed consent

All the participants for the study have signed the written informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Lian, K. & Sun, C. LncRNA LEF1-AS1 promotes osteogenic differentiation of dental pulp stem cells via sponging miR-24-3p. Mol Cell Biochem 475, 161–169 (2020). https://doi.org/10.1007/s11010-020-03868-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03868-7

Keywords

Navigation