Skip to main content

Biomarker study of the biological parameter and neurotransmitter levels in autistics

Abstract

Autism is a prevalent developmental disorder that combines repetitive behaviours, social deficits and language abnormalities. The present study aims to assess the autistic subjects using DSM IV-TR criteria followed with the analysis of neurotransmitters, biochemical parameters, oxidative stress and its ions in two groups of autistic subjects (group I < 12 years; group II ≥ 12 years). Antioxidants show a variation of 10% increase in controls compared to autistic age < 12 years. The concentration of pyruvate kinase and hexokinase is elevated in controls approximately 60% and 45%, respectively, with the significance of 95 and 99%. Autistic subjects showed marked variation in levels of neurotransmitters, oxidative stress and its related ions. Cumulative assessment of parameters related to biochemical markers and neurotransmitters paves the way for autism-based research, although these observations draw interest in an integrated approach for autism.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. American Psychiatric Association (2013) American Psychiatric Pub, Washington DC USA

    Google Scholar 

  2. Baio J, Wiggins L, Christensen DL, Maenner MJ, Daniels J, Warren Z, Kurzius-Spencer M, Zahorodny W, Robinson Rosenberg C, White T et al (2018) Prevalence of autism spectrum disorder among children aged 8 years—Autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveill. Summ 67:1

    PubMed  PubMed Central  Google Scholar 

  3. Muhle R, Trentacoste SV, Rapin I (2004) The genetics of autism. Pediatrics 113(5):e472–e486

    PubMed  Google Scholar 

  4. Smirni D, Carotenuto M, Precenzano F, Smirni P, Operto FF, Marotta R, Roccella M (2019) Memory performances and personality traits in mothers of children with obstructive sleep apnea syndrome. Psychol Res Behav Manag 12:481

    PubMed  PubMed Central  Google Scholar 

  5. Steffenburg S, Gillberg C, Hellgren L, Andersson L, Gillberg IC, Jakobsson G, Bohmai M (1989) A twin study of autism in Denmark, Finland, Iceland, Norway, and Sweden. J Child Psychol Psychiatry 30:405–416

    CAS  PubMed  Google Scholar 

  6. Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, Yuzda E, Rutter M (1995) Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med 25:63–77

    CAS  PubMed  Google Scholar 

  7. Folstein S (1996) Twin and adoption studies in child and adolescent psychiatric disorders. Curr Opin Pediat 8:339–347

    CAS  Google Scholar 

  8. Hong T, Falcone C, Dufour B, Amina S, Perez Castro R, Regalado J, Pearson W, Noctor SC, Martínez-Cerdeño V (2020) GABAARα2 is Decreased in the axon initial segment of pyramidal cells in specific areas of the prefrontal cortex in Autism. Neuroscience 437:76–86

    CAS  PubMed  Google Scholar 

  9. Zimmerman AW, Connors SL, Pardo CA (2006) Neuroimmunology and neurotransmitters in autism. In: Tuchman R, Rapin I (eds) Autism: a neurological disorder of early brain development. International Child Neurology Association Mac Keith Press, London, pp 141–159

    Google Scholar 

  10. Quaak I, Brouns MR, Van de Bor M (2013) The dynamics of autism spectrum disorders: how neurotoxic compounds and neurotransmitters interact. Int J Environ Res Public Health 10:3384–3408

    PubMed  PubMed Central  Google Scholar 

  11. Chauhan A, Chauhan V, Brown WT, Cohen I (2004) Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin—the antioxidant proteins. Life Sci 75:2539–25499

    CAS  PubMed  Google Scholar 

  12. Ng F, Berk M, Dean O, Bush AI (2008) Oxidative stress in psychiatric disorders: evidence base and therapeutic implications. Int J Neuropsychopharmacol 11:851–876

    CAS  PubMed  Google Scholar 

  13. James SJ, Cutler P, Melnyk S, Jernigan S, Janak L, Gaylor DW, Neubrander JA (2004) Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr 80:1611–1617

    CAS  PubMed  Google Scholar 

  14. Hirata M, Yoshida T, Miyajima K, Kosaka H, Tabuchi T (1995) Correlation between lead in plasma and other indicators of lead exposure among lead exposed workers. Int Arch Occup Environ Health 68:58–63

    CAS  PubMed  Google Scholar 

  15. Fernandez GO, Martinez RR, Palazuelos E, Fortoul T (1997) High blood lead levels in ceramic folk art workers in Michoacan. Mexico Arch Environ Health 52:51–55

    CAS  PubMed  Google Scholar 

  16. Nadeem A, Ahmad SF, Attia SM, Al-Ayadhi LY, Al-Harbi NO, Bakheet SA (2019) Dysregulated enzymatic antioxidant network in peripheral neutrophils and monocytes in children with autism. Prog Neuropsychopharmacol Biol Psychiatry 88:352–359

    CAS  PubMed  Google Scholar 

  17. Essa MM, Braidy N, Waly MI, Al-Farsi YM, Al-Sharbati M, Subash S, Amanat A, Al-Shaffaee MA, Guillemin GJ (2013) Impaired antioxidant status and reduced energy metabolism in autistic children. Res Autism Spec Disord 7(5):557–565

    Google Scholar 

  18. Loeffler DA, Connor JR, Juneau PL, Snyder BOS, Kanaley L, DeMaggio AJ, Nguyen H, Brickman CM, LeWitt PA (1995) Transferrin and iron in normal, Alzheimer’s disease, and Parkinson’ disease brain regions. J Neurochem 65(2):710–724

    CAS  PubMed  Google Scholar 

  19. Abrahams BS, Geschwind DH (2008) Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 9:341–355

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Weissman JR, Kelley RI, Bauman ML, Cohen BH, Murray KF, Mitchell RL, Kern RL, Natowicz MR (2008) Mitochondrial disease in autism spectrum disorder patients: a cohort analysis. PLoS ONE 3(11):3815

    Google Scholar 

  21. Al-Mosalem O, El-Ansary A, Attas O, Al-Ayadhi L (2009) Metabolic biomarkers related to energy metabolism in Saudi autistic children. Clin Biochem 42:949–957

    CAS  PubMed  Google Scholar 

  22. Tadeusz KJ (1976) Diagnostic difficulties in pathological fundus changes in the course of combined zygomatico-maxillary fracture. Klin Oczna 469(30):341–345

    Google Scholar 

  23. World Medical Association (2001) Declaration of Helsinki: ethical principles for medical research involving human subjects; 52nd WMA general assembly, Edinburgh, Scotland, October 2000. Bull World Health Organ 79(4):373–374

    PubMed Central  Google Scholar 

  24. Henry JB (1979) Clinical diagnosis and management by laboratory methods. WB Saunders and Company, Philadelphia, PA, p 365

    Google Scholar 

  25. Abrahão-Neto J, Infanti P, Vitolo M (1996) Hexokinase production from S. cerevisiae, culture conditions. Appl Biochem Biotechnol 57(58):407–441

    PubMed  Google Scholar 

  26. Malcovati M, Valentini G (1982) AMP- and fructose 1,6,-biphosphate activated pyruvate kinases from Escherichia coli. Methods Enzymol 90:170–179

    CAS  PubMed  Google Scholar 

  27. Donzanti BA, Yamamoto BK (1988) An improved and rapid HPLC-EC method for the isocratic separation of amino acid neurotransmitters from brain tissue and microdialysis perfusates. Life Sci 43:913–922

    CAS  PubMed  Google Scholar 

  28. Filipek PA, Accardo PJ, Baranek GT, Cook EH Jr, Dawson G, Gordon B, Gravel JS, Johnson CP, Kallen RJ, Levy SE, Minshew NJ, Ozonoff S, Prizant BM, Rapin I, Rogers SJ, Stone WL, Teplin S, Tuchman RF, Volkmar FR (1999) The screening and diagnosis of autistic spectrum disorders. J Autism Dev Disord 29:437–482

    Google Scholar 

  29. Mazzone L, Postorino V, Siracusano M, Riccioni A, Curatolo P (2018) The relationship between sleep problems, neurobiological alterations, core symptoms of autism spectrum disorder, and psychiatric comorbidities. J Clin Med 7:102

    PubMed Central  Google Scholar 

  30. Cook E, Leventhal B (1996) The serotonin system in autism. Curr Opin Pediat 8:348–354

    CAS  Google Scholar 

  31. Abdulamir HA, Abdul-Rasheed OF, Abdulghani EA (2018) Serotonin and serotonin transporter levels in autistic children. Saudi Med J 39:487

    PubMed  PubMed Central  Google Scholar 

  32. Anderson GM (2002) Genetics of childhood disorders: XLV. Autism, part 4: serotonin in autism. J Am Acad Child Adolesc Psych 41:1513–1516

    Google Scholar 

  33. Burgess NK, Sweeten TL, McMahon WM, Fujinami RS (2006) Hyperserotoninemia and altered immunity in autism. J Autism Dev Disord 36:697–704

    PubMed  Google Scholar 

  34. Cook EH, Leventhal BL, Heller W, Metz J, Wainwright M, Freedman DX (1990) Autistic children and their first-degree relatives: relationships between serotonin and norepinephrinelevels and intelligence. J Neuropsychiatry Clin Neurosci 2:268–274

    PubMed  Google Scholar 

  35. Lam KS, Aman MG, Arnold LE (2006) Neurochemical correlates of autistic disorder: a review of the literature. Res Dev Disabil 27:254–289

    PubMed  Google Scholar 

  36. Siemann JK, Muller CL, Forsberg CG, Blakely RD, Veenstra-VanderWeele J, Wallace MT (2017) An autism-associated serotonin transporter variant disrupts multisensory processing. Transl Psych 7:e1067

    CAS  Google Scholar 

  37. Martineau J, Barthélémy C, Jouve J, Muh JP, Lelord G (1992) Monoamines (serotonin and catecholamines) and their derivatives in infantile autism: age-related changes and drug effects. Dev Med Child Neurol 34:593–603

    CAS  PubMed  Google Scholar 

  38. Makkonen I, Rikkonen R, Kokki H, Airaksinen M, Kulkka J (2008) Serotonin and dopamine transporter binding in children with autism determined by SPECT. Dev Med Child Neurol 50:593–597

    PubMed  Google Scholar 

  39. Cacabelos R (2016) Attention deficit/ hyperactivity disorder. Genomic Med Pharmacogenomics Health Biotechnol 4:67–70

    Google Scholar 

  40. Al-Otaish H, Al-Ayadhi L, Bjørklund G, Chirumbolo S, Urbina MA, El-Ansary A (2018) Relationship between absolute and relative ratios of glutamate, glutamine and GABA and severity of autism spectrum disorder. Metab Brain Dis 33:843–854

    CAS  PubMed  Google Scholar 

  41. Dhossche D, Applegate H, Abraham A, Maertens P, Bland L, Bencsath A, Martinez J (2002) Elevated plasma gamma-aminobutyric acid (GABA) levels in autistic youngsters: stimulus for a GABA hypothesis of autism. Med Sci Monit 8(8):R1–R6

    Google Scholar 

  42. Lauder JM, Liu J, Devaud L, Morrow AL (1998) GABA as a trophic factor for developing monoamine neurons. Perspect Dev Neurobiol 5(2–3):247–259

    CAS  PubMed  Google Scholar 

  43. Mahdavi M, Kheirollahi M, Riahi R, Khorvash F, Khorrami M, Mirsafaie M (2018) Meta-analysis of the association between GABA receptor polymorphisms and autism spectrum disorder (ASD). J Mol Neurosci 65:1–9

    CAS  PubMed  Google Scholar 

  44. Blatt GJ, Fitzgerald CM, Guptill JT, Booker AB, Kemper TL, Bauman ML (2001) Density and distribution of hippocampal neurotransmitter receptors in autism: an autoradiographic study. J Autism Dev Disord 31:537–543

    CAS  PubMed  Google Scholar 

  45. Hussman JP (2001) Suppressed GABAergic inhibition as a common factor in suspected etiologies of autism. J Autism Dev Disord 31:247–248

    CAS  PubMed  Google Scholar 

  46. El-Ansary AK, Bacha AB, Ayahdi L (2011) Relationship between chronic lead toxicity and plasma neurotransmitters in autistic patients from Saudi Arabia. Clin Biochem 44:1116–1120

    CAS  PubMed  Google Scholar 

  47. El-Ansary AK, Al-Daihan S, Al-Dbass A, Al-Ayadhi L (2010) Measurement of selected ions related to oxidative stress and energy metabolism in Saudi autistic children. Clin Biochem 43:63–70

    CAS  PubMed  Google Scholar 

  48. Juurlink BH, Paterson PG (1998) Review of oxidative stress in brain and spinal cord injury: suggestions for pharmacological and nutritional management strategies. J Spinal Cord Med 21:309–334

    CAS  PubMed  Google Scholar 

  49. Nekrassova O, Lawrence NS, Compton RG (2003) Analytical determination of homocysteine: a review. Talanta 60:1085–1095

    CAS  PubMed  Google Scholar 

  50. Suh JH, Walsh WJ, McGinnis WR, Lewis A, Ames BN (2008) Altered sulfur amino acid metabolism in immune cells of children diagnosed with autism. Am J Biochem Biotechnol 4:105–113

    CAS  Google Scholar 

  51. Chauhan A, Chauhan V (2006) Oxidative stress in autism. Pathophysiology 13:171–181

    CAS  PubMed  Google Scholar 

  52. Krey JF, Dolmetsch RE (2007) Molecular mechanisms of autism: a possible role for Ca 2+ signaling. Curr Opin Neurobiol 17:112–119

    CAS  PubMed  Google Scholar 

  53. Scortegagna M, Cataisson C, Martin RJ, Hicklin DJ, Schreiber RD, Yuspa SH, Arbeit JM (2008) HIF-1α regulates epithelial inflammation by cell autonomous NFκB activation and paracrine stromal remodeling. Blood 111:3343–3354

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lachant NE, Tomoda A, Tanaka KR (1984) Inhibition of pentose phosphate shunt by lead: a potential mechanism for hemolysis in lead poisoning. Blood 63:518–524

    CAS  PubMed  Google Scholar 

  55. Paglia DE, Valentine WN, Dahlgren JG (1975) Effects of low-level lead exposure on pyrimidine -5- nucleotidase and other erythrocyte enzymes, possible role of pyrimidine -5- nucleotidase in the pathogenesis of leadinduced anemia. J Clin Invest 56:1164–1169

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hunaiti AA, Soud M (2000) Effect of lead concentration on the level of glutathione, glutathione S-transferase, reductase and peroxidase in human blood. Sci Total Environ 248(1):45–50

    CAS  PubMed  Google Scholar 

  57. Homem de Bittencourt PI, Peres CM, Yano MM, Hiratea MH, Curi R (1993) Pyruvate is a lipid precursor for rat lymphocytes in culture: evidence for a lipid exporting capacity. Biochem Mol Biol Int 30:631–641

    CAS  PubMed  Google Scholar 

  58. Pellerin L (2003) Lac as a pivotal element in neuron-glia metabolic cooperation. Neurochem Int 43:331–338

    CAS  PubMed  Google Scholar 

  59. Gomez I (2009) Ferrer, Increased oxidation of certain glycolysis and energy metabolism enzymes in the frontal cortex of Lewy body diseases. J Neurosci Res 87(4):1002–1013

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Management of Bharathiar University for providing infrastructure facilities for this research work and the subjects who volunteered to take part in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Meyyazhagan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meyyazhagan, A., Balasubramanian, B., Easwaran, M. et al. Biomarker study of the biological parameter and neurotransmitter levels in autistics. Mol Cell Biochem 474, 277–284 (2020). https://doi.org/10.1007/s11010-020-03851-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03851-2

Keywords

  • Autism
  • Biochemical
  • Neurotransmitters
  • Oxidative stress
  • Antioxidant proteins