Skip to main content
Log in

Dynamic regulation of histone H3 lysine (K) acetylation and deacetylation during prolonged oxygen deprivation in a champion anaerobe

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Trachemys scripta elegans can survive up to three months of absolute anoxia at 3 °C and recover with minimal cellular damage. Red-eared sliders employ various physiological and biochemical adaptations to survive anoxia with metabolic rate depression (MRD) being the most prominent adaptation. MRD is mediated by epigenetic, transcriptional, post-transcriptional, and post-translational mechanisms aimed at shutting down cellular processes that are not needed for anoxia survival, while reprioritizing ATP towards cell processes that are vital for anaerobiosis. Histone acetylation/deacetylation are epigenetic modifications that maintain a proper balance between permissive chromatin and restricted chromatin, yet very little is known about protein regulation and enzymatic activity of the writers and erasers of acetylation during natural anoxia tolerance. As such, this study explored the interplay between transcriptional activators, histone acetyltransferases (HATs), and transcriptional repressors, sirtuins (SIRTs), along with three prominent acetyl-lysine (K) moieties of histone H3 in the liver of red-eared sliders. Western immunoblotting was used to measure acetylation levels of H3-K14, H3-K18, and H3-K56, as well as protein levels of histone H3-total, HATs, and nuclear SIRTs in the liver in response to 5 h and 20 h anoxia. Global and nuclear enzymatic activity of HATs and enzymatic activity of nuclear SIRTs were also measured. Overall, a strong suppression of HATs-mediated H3 acetylation and SIRT-mediated deacetylation was evident in the liver of red-eared sliders that could play an important role in ATP conservation as part of the overall reduction in metabolic rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All raw data will be available upon request by the corresponding author.

References

  1. Jackson D, Ultsch G (1982) Long-term submergence at 3°C of the turtle, Chrysemys picta bellii, in normoxic and severely hypoxic water: II. Extracellular ionic responses to extreme lactic acidosis. J Exp Biol 29–43

  2. Jackson D (1968) Metabolic depression and oxygen depletion in the diving turtle. J Appl Physiol 24:503–509

    Article  CAS  PubMed  Google Scholar 

  3. Storey K, Storey J (1990) Metabolic rate depression and biochemical adaptation in anaerobiosis, hibernation and estivation. Q Rev Biol 65:145–174. https://doi.org/10.4172/2157-7625.1000224

    Article  CAS  PubMed  Google Scholar 

  4. Storey K (2007) Anoxia tolerance in turtles: metabolic regulation and gene expression. Comp Biochem Physiol Part A Mol Integr Physiol 147:263–276. https://doi.org/10.1016/j.cbpa.2006.03.019

    Article  CAS  Google Scholar 

  5. Hochachka P (1988) Metabolic suppression and oxygen availability. Can J Zool 66:152–158. https://doi.org/10.1139/z88-021

    Article  CAS  Google Scholar 

  6. Hochachka P (1986) Defense strategies against hypoxia and hypothermia. Science 231:234–241. https://doi.org/10.1126/science.2417316

    Article  CAS  PubMed  Google Scholar 

  7. Jackson DC (2000) Living without oxygen: lessons from the freshwater turtle. Comp Biochem Physiol Part A Mol Integr Physiol 125:299–315. https://doi.org/10.1016/S1095-6433(00)00160-4

    Article  CAS  Google Scholar 

  8. Storey K, Storey J (1992) Natural freeze tolerance in ectothermic vertebrates. Annu Rev Physiol 54:619–637. https://doi.org/10.1146/annurev.ph.54.030192.003155

    Article  CAS  PubMed  Google Scholar 

  9. Hermes-Lima M, Zenteno-Savín T (2002) Animal response to drastic changes in oxygen availability and physiological oxidative stress. Comp Biochem Physiol Toxicol Pharmacol 133:537–556. https://doi.org/10.1016/S1532-0456(02)00080-7

    Article  Google Scholar 

  10. Jackson D, Taylor S, Asare V et al (2006) Comparative shell buffering properties correlate with anoxia tolerance in freshwater turtles. AJP Regul Integr Comp Physiol 292:R1008–R1015. https://doi.org/10.1152/ajpregu.00519.2006

    Article  CAS  Google Scholar 

  11. Jackson D (1997) Lactate accumulation in the shell of the turtle, Chrysemys picta bellii, during anoxia at 3 and 10°C. J Exp Biol 200:2295–2300

    CAS  PubMed  Google Scholar 

  12. Jackson D, Heisler N (1983) Intracellular and extracellular acid–base and electrolyte status of submerged anoxic turtles at 3°C. Respir Physiol 53:187–201

    Article  CAS  PubMed  Google Scholar 

  13. Jackson D, Toney V, Okamoto S (1999) Lactate distribution and metabolism during and after anoxia in the turtle, Chrysemys picta bellii. Am J Physiol 271:R409–R416

    Google Scholar 

  14. Jackson D, Crocker C, Ultsch G (2000) Bone and shell contribution to lactic acid buffering of submerged turtles Chrysemys picta bellii at 3°C. Am J Physiol - Regul Integr Comp Physiol 278:R1564–1571

    Article  CAS  PubMed  Google Scholar 

  15. Krivoruchko A, Storey K (2010) Activation of antioxidant defenses in response to freezing in freeze-tolerant painted turtle hatchlings. Biochim Biophys Acta - Gen Subj 1800:662–668. https://doi.org/10.1016/j.bbagen.2010.03.015

    Article  CAS  Google Scholar 

  16. Krivoruchko A, Storey K (2010) Regulation of the heat shock response under anoxia in the turtle, Trachemys scripta elegans. J Comp Physiol B 180:403–414. https://doi.org/10.1007/s00360-009-0414-9

    Article  CAS  PubMed  Google Scholar 

  17. Krivoruchko A, Storey K (2010) Molecular mechanisms of turtle anoxia tolerance: a role for NF-κB. Gene 450:63–69. https://doi.org/10.1016/j.gene.2009.10.005

    Article  CAS  PubMed  Google Scholar 

  18. Krivoruchko A, Storey K (2013) Activation of the unfolded protein response during anoxia exposure in the turtle Trachemys scripta elegans. Mol Cell Biochem 374:91–103. https://doi.org/10.1007/s11010-012-1508-3

    Article  CAS  PubMed  Google Scholar 

  19. Willmore W, Storey KB (1997) Antioxidant systems and anoxia tolerance in a freshwater turtle Trachemys scripta elegans. Mol Cell Biochem 170:177–185. https://doi.org/10.1023/A:1006817806010

    Article  CAS  PubMed  Google Scholar 

  20. Hochachka P, Buck L, Doll C, Land S (1996) Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc Natl Acad Sci U S A 93:9493–9498. https://doi.org/10.1073/pnas.93.18.9493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Storey K (1996) Metabolic adaptations supporting anoxia tolerance in reptiles: recent advances. Comp Biochem Physiol Part B Comp Biochem 113:23–35. https://doi.org/10.1016/0305-0491(95)02043-8

    Article  CAS  Google Scholar 

  22. Dawson NJ, Biggar KK, Storey KB (2013) Characterization of fructose-1,6-bisphosphate aldolase during anoxia in the tolerant turtle, Trachemys scripta elegans: an assessment of enzyme activity, expression and structure. PLoS ONE 8:e68830. https://doi.org/10.1371/journal.pone.0068830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brooks S, Storey K (1989) Regulation of glycolytic enzymes during anoxia in the turtle Pseudemys scripta. Am J Physiol 257:R278–R283. https://doi.org/10.1152/ajpregu.1989.257.2.R278

    Article  CAS  PubMed  Google Scholar 

  24. Bell R, Storey K (2012) Regulation of liver glutamate dehydrogenase from an anoxia-tolerant freshwater turtle. HOAJ Biol 1:1–3. https://doi.org/10.7243/2050-0874-1-3

    Article  Google Scholar 

  25. Mehrani H, Storey K (1995) Enzymatic control of glycogenolysis during anoxic submergence in the freshwater turtle Trachemys scripta. Int J Biochem Cell Biol 821–830:821–830. https://doi.org/10.1016/1357-2725(95)00042-N

    Article  Google Scholar 

  26. Dawson N, Bell R, Storey K (2013) Purification and properties of white muscle lactate dehydrogenase from the anoxia-tolerant turtle, the red-eared slider, Trachemys scripta elegans. Enzyme Res 2013:1–8. https://doi.org/10.1155/2013/784973

    Article  CAS  Google Scholar 

  27. Zhang J, Biggar KK, Storey KB (2013) Regulation of p53 by reversible post-transcriptional and post-translational mechanisms in liver and skeletal muscle of an anoxia tolerant turtle, Trachemys scripta elegans. Gene 513:147–155. https://doi.org/10.1016/j.gene.2012.10.049

    Article  CAS  PubMed  Google Scholar 

  28. Bansal S, Biggar KK, Krivoruchko A, Storey KB (2016) Response of the JAK-STAT signaling pathway to oxygen deprivation in the red eared slider turtle, Trachemys scripta elegans. Gene 593:34–40. https://doi.org/10.1016/j.gene.2016.08.010

    Article  CAS  PubMed  Google Scholar 

  29. Biggar KK, Storey KB (2012) Evidence for cell cycle suppression and microRNA regulation of cyclin D1 during anoxia exposure in turtles. Cell Cycle 11:1705–1713. https://doi.org/10.4161/cc.19790

    Article  CAS  PubMed  Google Scholar 

  30. Krivoruchko A, Storey K (2013) Anoxia-responsive regulation of the FoxO transcription factors in freshwater turtles, Trachemys scripta elegans. Biochim Biophys Acta - Gen Subj 1830:4990–4998. https://doi.org/10.1016/j.bbagen.2013.06.034

    Article  CAS  Google Scholar 

  31. Biggar K, Storey K (2015) Insight into post-transcriptional gene regulation: stress-responsive microRNAs and their role in the environmental stress survival of tolerant animals. J Exp Biol 218:1281–1289. https://doi.org/10.1242/jeb.104828

    Article  PubMed  Google Scholar 

  32. Biggar KK, Kornfeld SF, Storey KB (2011) Amplification and sequencing of mature microRNAs in uncharacterized animal models using stem–loop reverse transcription–polymerase chain reaction

  33. Biggar K, Storey K (2011) The emerging roles of microRNAs in the molecular responses of metabolic rate depression. J Mol Cell Biol 3:167–175. https://doi.org/10.1093/jmcb/mjq045

    Article  CAS  PubMed  Google Scholar 

  34. Brooks S, Storey K (1993) De novo protein synthesis and protein phosphorylation during anoxia and recovery in the red-eared turtle. Am J Physiol 265:R1380–R1386

    CAS  PubMed  Google Scholar 

  35. Storey K, Storey J (2007) Tribute to P. L. Lutz: putting life on ‘pause’: molecular regulation of hypometabolism. J Exp Biol 210:1700–1714. https://doi.org/10.1242/jeb.02716

    Article  CAS  PubMed  Google Scholar 

  36. Biggar K, Groom A, Storey K (2011) Hypometabolism and turtles: Physiological and molecular strategies of anoxic survival. In: Nowakowska A, Caputa M (eds) Hypometabolism: strategies of survival in vertebrates and invertebrates. Research Signpost, Kerala, pp 57–94

    Google Scholar 

  37. Choudhary C, Mann M (2010) Decoding signalling networks by mass spectrometry-based proteomics. Nat Rev Mol Cell Biol 11:427–439. https://doi.org/10.1038/nrm2900

    Article  CAS  PubMed  Google Scholar 

  38. Strahl B, Allis C (2000) The language of covalent histone modifications. Nature 403:41–45. https://doi.org/10.1038/47412

    Article  CAS  PubMed  Google Scholar 

  39. Shahbazian M, Grunstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100. https://doi.org/10.1146/annurev.biochem.76.052705.162114

    Article  CAS  PubMed  Google Scholar 

  40. Berger S (2002) Histone modifications in transcriptional regulation. Curr Opin Genet Dev 12:142–148. https://doi.org/10.1016/S0959-437X(02)00279-4

    Article  CAS  PubMed  Google Scholar 

  41. Clayton A, Hazzalin C, Mahadevan L (2006) Enhanced histone acetylation and transcription: a dynamic perspective. Mol Cell 23:289–296. https://doi.org/10.1016/j.molcel.2006.06.017

    Article  CAS  PubMed  Google Scholar 

  42. Struhl K (1998) Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 12:599–606

    Article  CAS  PubMed  Google Scholar 

  43. Wade P, Pruss D, Wolffe A (1997) Histone acetylation: chromatin in action. Trends Biochem Sci 22:128–132. https://doi.org/10.1016/S0968-0004(97)01016-5

    Article  CAS  PubMed  Google Scholar 

  44. Eberharter A, Becker P (2002) Histone acetylation: a switch between repressive and permissive chromatin: second in review series on chromatin dynamics. EMBO Rep 3:224–229. https://doi.org/10.1093/embo-reports/kvf053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dyda F, Klein D, Hickman A (2000) GCN5-related N-acetyltransferases: a structural overview. Annu Rev Biophys Biomol Struct 29:81–103. https://doi.org/10.1146/annurev.biophys.29.1.81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Neuwald A, Landsman D (1997) GCN5-related histone N-acetyltransferases belong to a diverse superfamily that includes the yeast SPT10 protein. Trends Biochem Sci 22:154–155

    Article  CAS  PubMed  Google Scholar 

  47. Avvakumov N, Cote J (2007) The MYST family of histone acetyltransferases and their intimate links to cancer. Oncogene 26:5395–5407. https://doi.org/10.1038/sj.onc.1210608

    Article  CAS  PubMed  Google Scholar 

  48. Sterner D, Berger S (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64:435–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bannister A, Kouzarides T (1996) The CBP co-activator is a histone acetyltransferase. Nature 384:641–643. https://doi.org/10.1038/384641a0

    Article  CAS  PubMed  Google Scholar 

  50. Liu X, Wang L, Zhao K et al (2008) The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature 451:846–850. https://doi.org/10.1038/nature06546

    Article  CAS  PubMed  Google Scholar 

  51. Mizzen C, Yang X, Kokubo T et al (1996) The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Cell 87:1261–1270

    Article  CAS  PubMed  Google Scholar 

  52. O’Malley B, Spencer T, Jenster G et al (1997) Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389:194–198. https://doi.org/10.1038/38304

    Article  CAS  PubMed  Google Scholar 

  53. Kawasaki H, Schiltz L, Chiu R et al (2000) ATF-2 has intrinsic histone acetyltransferase activity which is modulated by phosphorylation. Nature 405:195–200. https://doi.org/10.1038/35012097

    Article  CAS  PubMed  Google Scholar 

  54. Delcuve G, Khan D, Davie J et al (2012) Roles of histone deacetylases in epigenetic regulation: emerging paradigms from studies with inhibitors. Clin Epigenetics 4:5. https://doi.org/10.1186/1868-7083-4-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Polevoda B, Sherman F (2000) Nalpha -terminal acetylation of eukaryotic proteins. J Biol Chem 275:36479–36482. https://doi.org/10.1074/jbc.R000023200

    Article  CAS  PubMed  Google Scholar 

  56. Glozak M, Sengupta N, Zhang X, Seto E (2005) Acetylation and deacetylation of non-histone proteins. Gene 363:15–23. https://doi.org/10.1016/j.gene.2005.09.010

    Article  CAS  PubMed  Google Scholar 

  57. Gu W, Roeder R (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90:595–606. https://doi.org/10.1016/s0092-8674(00)80521-8

    Article  CAS  PubMed  Google Scholar 

  58. Munshi N, Merika M, Yie J et al (1998) Acetylation of HMG I(Y) by CBP turns off IFN? Expression by disrupting the enhanceosome. Mol Cell 2:457–467. https://doi.org/10.1016/S1097-2765(00)80145-8

    Article  CAS  PubMed  Google Scholar 

  59. Wang R, Cherukuri P, Luo J (2005) Activation of Stat3 sequence-specific DNA binding and transcription by p300/CREB-binding protein-mediated acetylation. J Biol Chem 280:11528–11534. https://doi.org/10.1074/jbc.M413930200

    Article  CAS  PubMed  Google Scholar 

  60. Patel J, Du Y, Ard P et al (2004) The c-MYC oncoprotein is a substrate of the acetyltransferases hGCN5/PCAF and TIP60. Mol Cell Biol 24:10826–10834. https://doi.org/10.1128/MCB.24.24.10826-10834.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Perez-Perri JI, Dengler VL, Audetat KA et al (2016) The TIP60 complex is a conserved coactivator of HIF1A. Cell Rep 16:37–47. https://doi.org/10.1016/j.celrep.2016.05.082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen L, Fischle W, Verdin E, Greene W (2001) Duration of nuclear NF-kappa B action regulated by reversible acetylation. Science 293:1653–1657. https://doi.org/10.1126/science.1062374

    Article  CAS  Google Scholar 

  63. Xiong Y, Guan K-L (2012) Mechanistic insights into the regulation of metabolic enzymes by acetylation. J Cell Biol 198:155–164. https://doi.org/10.1083/jcb.201202056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ventura M, Mateo F, Serratosa J et al (2010) Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase is regulated by acetylation. Int J Biochem Cell Biol 42:1672–1680. https://doi.org/10.1016/j.biocel.2010.06.014

    Article  CAS  PubMed  Google Scholar 

  65. Hochachka P, Lutz P (2001) Mechanism, origin, and evolution of anoxia tolerance in animals. Comp Biochem Physiol B Biochem Mol Biol 130:435–459

    Article  CAS  PubMed  Google Scholar 

  66. Hochachka P, Rupert J, Monge C (1999) Adaptation and conservation of physiological systems in the evolution of human hypoxia tolerance. Comp Biochem Physiol A Mol Integr Physiol 124:1–17

    Article  CAS  PubMed  Google Scholar 

  67. Welinder C, Ekblad L (2011) Coomassie staining as loading control in western blot analysis. J Proteome Res 10:1416–1419. https://doi.org/10.1021/pr1011476

    Article  CAS  PubMed  Google Scholar 

  68. Storey K, Storey J (2004) Oxygen limitation and metabolic rate depression. In: Storey KB (ed) Functional Metabolism. Wiley, Hoboken, pp 415–442

    Chapter  Google Scholar 

  69. Sauve A, Wolberger C, Schramm V, Boeke J (2006) The biochemistry of sirtuins. Annu Rev Biochem 75:435–465. https://doi.org/10.1146/annurev.biochem.74.082803.133500

    Article  CAS  PubMed  Google Scholar 

  70. Wijenayake S, Hawkins L, Storey K (2018) Dynamic regulation of six histone H3 lysine (K) methyltransferases in response to prolonged anoxia exposure in a freshwater turtle. Gene 649:50–57. https://doi.org/10.1016/J.GENE.2018.01.086

    Article  CAS  PubMed  Google Scholar 

  71. Wijenayake S, Storey K (2016) The role of DNA methylation during anoxia tolerance in a freshwater turtle (Trachemys scripta elegans). J Comp Physiol B 186:333–342. https://doi.org/10.1007/s00360-016-0960-x

    Article  CAS  PubMed  Google Scholar 

  72. Krivoruchko A, Storey K (2010) Epigenetics in anoxia tolerance: a role for histone deacetylases. Mol Cell Biochem 342:151–161. https://doi.org/10.1007/s11010-010-0479-5

    Article  CAS  PubMed  Google Scholar 

  73. Buck L, Land S, Hochachka P (1993) Anoxia-tolerant hepatocytes: Model system for study of reversible metabolic suppression. Am J Physiol 265:49–56. https://doi.org/10.1152/ajpregu.1993.265.1.R49

    Article  Google Scholar 

  74. Karmodiya K, Krebs A, Oulad-Abdelghani M et al (2012) H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells. BMC Genomics 13:424. https://doi.org/10.1186/1471-2164-13-424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Huang J, Wan D, Li J et al (2015) Histone acetyltransferase PCAF regulates inflammatory molecules in the development of renal injury. Epigenetics 10:62–72. https://doi.org/10.4161/15592294.2014.990780

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wurtele H, Kaiser G, Bacal J et al (2012) Histone H3 lysine 56 acetylation and the response to DNA replication fork damage. Mol Cell Biol 32:154–172. https://doi.org/10.1128/MCB.05415-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Biggar KK, Zhang J, Storey KB (2019) Navigating oxygen deprivation: liver transcriptomic responses of the red eared slider turtle to environmental anoxia. PeerJ. https://doi.org/10.7717/peerj.8144

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lee K, Workman J (2007) Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol 8:284–295. https://doi.org/10.1038/nrm2145

    Article  CAS  PubMed  Google Scholar 

  79. Kimura A, Matsubara K, Horikoshi M (2005) A decade of histone acetylation: marking eukaryotic chromosomes with specific codes. J Biochem 138:647–662. https://doi.org/10.1093/jb/mvi184

    Article  CAS  PubMed  Google Scholar 

  80. Ura K, Kurumizaka H, Dimitrov S et al (1997) Histone acetylation: Influence on transcription, nucleosome mobility and positioning, and linker histone-dependent transcriptional repression. EMBO J 16:2096–2107. https://doi.org/10.1093/emboj/16.8.2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hebbes T, Thorne A, Crane-Robinson C (1988) A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J 7:1395–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Allfrey V, Faulkner R, Mirsky A (1964) Acetylation and methyaltion of histones and their possible roles in the regulation of RNA synthesis. Proc Natl Acad Sci USA 51:786–794. https://doi.org/10.1073/pnas.51.5.786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Johnsson A, Durand-Dubief M, Xue-Franzen Y et al (2009) HAT-HDAC interplay modulates global histone H3K14 acetylation in gene-coding regions during stress. EMBO Rep 10:1009–1014. https://doi.org/10.1038/embor.2009.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Xue-Franzen Y, Henriksson J, Burglin T, Wright A (2013) Distinct roles of the Gcn5 histone acetyltransferase revealed during transient stress-induced reprogramming of the genome. BMC Genomics 14:479. https://doi.org/10.1186/1471-2164-14-479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Barlev N, Poltoratsky V, Owen-Hughes T et al (1998) Repression of GCN5 histone acetyltransferase activity via bromodomain-mediated binding and phosphorylation by the Ku-DNA-dependent protein kinase complex. Mol Cell Biol 18:1349–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lv L, Li D, Zhao D et al (2011) Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell 42:719–730. https://doi.org/10.1016/j.molcel.2011.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kimura A, Horikoshi M (1998) Tip60 acetylates six lysines of a specific class in core histones in vitro. Genes Cells 3:789–800

    Article  CAS  PubMed  Google Scholar 

  88. Tang Y, Luo J, Zhang W, Gu W (2006) Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 24:827–839. https://doi.org/10.1016/j.molcel.2006.11.021

    Article  CAS  PubMed  Google Scholar 

  89. Levine A (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331. https://doi.org/10.1016/s0092-8674(00)81871-1

    Article  CAS  PubMed  Google Scholar 

  90. Maeda T, Hanna A, Sim A et al (2002) GADD45 regulates G2/M arrest, DNA repair, and cell death in keratinocytes following ultraviolet exposure. J Invest Dermatol 119:22–26. https://doi.org/10.1046/J.1523-1747.2002.01781.X

    Article  CAS  PubMed  Google Scholar 

  91. Vousden K, Ryan K (2009) p53 and metabolism. Nat Rev Cancer 9:691–700. https://doi.org/10.1038/nrc2715

    Article  CAS  PubMed  Google Scholar 

  92. Okoshi R, Ozaki T, Yamamoto H et al (2008) Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress. J Biol Chem 283:3979–3987. https://doi.org/10.1074/jbc.M705232200

    Article  CAS  PubMed  Google Scholar 

  93. Milne J, Denu J (2008) The sirtuin family: therapeutic targets to treat diseases of aging. Curr Opin Chem Biol 12:11–17. https://doi.org/10.1016/j.cbpa.2008.01.019

    Article  CAS  PubMed  Google Scholar 

  94. Finkel T, Deng C-X, Mostoslavsky R (2009) Recent progress in the biology and physiology of sirtuins. Nature 460:587–591. https://doi.org/10.1038/nature08197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lai FMH, Miller AT (1973) Effect of hypoxia on brain and liver NAD+/NADH2 ratios in the fresh-water turtle (pseudemys scripta legans). Comp Biochem Physiol Part B Biochem 44:307–312. https://doi.org/10.1016/0305-0491(73)90367-2

    Article  CAS  Google Scholar 

  96. Jackson DC, Ultsch GR (2010) Physiology of hibernation under the ice by turtles and frogs. J Exp Zool Part A Ecol Genet Physiol 313A:311–327. https://doi.org/10.1002/jez.603

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by a Discovery Grant (#6793) awarded to Dr. Kenneth B Storey from the Natural Sciences and Engineering Research Council of Canada (NSERC) and Dr. Kenneth B. Storey holds the Canada Research Chair in Molecular Physiology. Dr. Sanoji Wijenayake holds a NSERC Postdoctoral Research Fellowship at the University of Toronto.

Author information

Authors and Affiliations

Authors

Contributions

SW: Conceived and designed the experiment, prepared all material, conducted all experiments, data collection, and analysis and wrote the paper. KBS: Provided all reagents and equipment necessary for the project, provided supervision, and assisted with manuscript writing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kenneth B. Storey.

Ethics declarations

Conflict of interest

Authors declare that they have no conflicts of interest.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethical approval

All animals were cared for in accordance to the guidelines of the Canadian Council on Animal Care based on the prior approval of Carleton University Animal Care Committee (protocol #: 13683).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wijenayake, S., Storey, K.B. Dynamic regulation of histone H3 lysine (K) acetylation and deacetylation during prolonged oxygen deprivation in a champion anaerobe. Mol Cell Biochem 474, 229–241 (2020). https://doi.org/10.1007/s11010-020-03848-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03848-x

Keywords

Navigation