Skip to main content

Advertisement

Log in

Artemisinin suppresses myocardial ischemia–reperfusion injury via NLRP3 inflammasome mechanism

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Artemisinin is known for its pharmaceutical effect against malaria and received increased attention for its other potential function. Mounting evidence suggest that artemisinin could also exert cardioprotective effects while the understanding of its regulatory mechanism is still limited. This study is designed to investigate the role of artemisinin in myocardial ischemia/reperfusion (I/R) injury and the involvement of NLRP3 inflammasome. Artemisinin was administrated for 14 consecutive days intragastrically before I/R injury. Cardiac function was assessed by echocardiography. Infarct area was observed through HE and TTC staining. Apoptosis and autophagy were assessed by TUNEL and Western blotting. The artemisinin-treated myocardial I/R rats demonstrated less severe myocardial I/R injury (smaller infarct size and lower CK-MB, LDH), significant inhibition of cardiac autophagy (decreased LC3II/I and increased p62), improved mitochondrial electron transport chain activity, concomitant with decreased activation of NLRP3 inflammasome (decreased NLRP3, ASC, cleaved caspase-1, IL-1β). In conclusion, our findings further confirmed that activation of the NLRP3 inflammasome pathway is involved in myocardial I/R injury, whereas artemisinin preconditioning could effectively protect against myocardial I/R injury through suppression of NLRP3 inflammasome activation. Therefore, the NLRP3 inflammasome might serve as a promising therapeutic target providing new mechanisms for understanding the effect of artemisinin during the evolution of myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and/or analyzed in the current study are available from the corresponding author on reasonable request.

References

  1. Yasuda S, Shimokawa H (2009) Acute myocardial infarction: the enduring challenge for cardiac protection and survival. Circ J 73:2000–2008

    Article  Google Scholar 

  2. Weintraub WS, Sadanandan S (2003) Percutaneous coronary intervention in stable patients after acute myocardial infarction. Circulation 108:1292–1294

    Article  Google Scholar 

  3. Dhaliwal H, Kirshenbaum LA, Randhawa AK, Singal PK (1991) Correlation between antioxidant changes during hypoxia and recovery on reoxygenation. Am J Physiol 261:632–638

    Google Scholar 

  4. Bing HW, Liew D, Huang KW, Li H, Tang W, Kelly DJ, Reid C, Liu Z (2018) The challenges of stem cell therapy in myocardial infarction and heart failure and the potential strategies to improve the outcomes. Nano Life 8:1841008

    Article  Google Scholar 

  5. Chen Z, Chua CC, Ho YS, Hamdy RC, Chua BH (2001) Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice. Am J Physiol Heart Circ Physiol 280:2313–2320

    Article  Google Scholar 

  6. Aghaei M, Motallebnezhad M, Ghorghanlu S, Jabbari A, Enayati A, Rajaei M, Pourabouk M, Moradi A, Alizadeh AM, Khori V (2019) Targeting autophagy in cardiac ischemia/reperfusion injury: a novel therapeutic strategy. J Cell Physiol 234:16768–16778

    Article  CAS  Google Scholar 

  7. Jiang CM, Han LP, Li HZ, Qu YB, Zhang ZR, Wang R, Xu CQ, Li WM (2008) Calcium-sensing receptors induce apoptosis in cultured neonatal rat ventricular cardiomyocytes during simulated ischemia/reperfusion. Cell Biol Int 32:792–800

    Article  CAS  Google Scholar 

  8. Zeng M, Wei X, Wu Z, Li W, Li B, Zhen Y, Chen J, Wang P, Fei Y (2013) NF-κB-mediated induction of autophagy in cardiac ischemia/reperfusion injury. Biochem Biophys Res Commun 436:180–185

    Article  CAS  Google Scholar 

  9. Lutz J, Thürmel K, Heemann U (2010) Anti-inflammatory treatment strategies for ischemia/reperfusion injury in transplantation. J Inflamm 7:27

    Article  Google Scholar 

  10. Yang J, Li Y, Hu C (2011) Ischemic preconditioning protects against myocardial ischemia–reperfusion injury through inhibiting toll-like receptor 4/NF-κB signaling pathway in rats. Zhong Nan Da Xue Xue Bao Yi Xue Ban 36:972–978

    CAS  PubMed  Google Scholar 

  11. Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, Macdonald K, Speert D, Fernandesalnemri T, Wu J, Monks BG, Fitzgerald KA (2009) Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183:787–791

    Article  CAS  Google Scholar 

  12. Daniels MJ, Rivers-Auty J, Schilling T, Spencer NG, Watremez W, Fasolino V, Booth SJ, White CS, Baldwin AG, Freeman S (2016) Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer's disease in rodent models. Nat Commun 7:12504

    Article  CAS  Google Scholar 

  13. Menu P, Pellegrin M, Aubert J-F, Bouzourene K, Tardivel A, Mazzolai L, Tschopp J (2011) Atherosclerosis in ApoE-deficient mice progresses independently of the NLRP3 inflammasome. Cell Death Dis 2:e137

    Article  CAS  Google Scholar 

  14. Zhang X, Du Q, Yang Y, Wang J, Dou S, Liu C, Duan J (2017) The protective effect of Luteolin on myocardial ischemia/reperfusion (I/R) injury through TLR4/NF-κB/NLRP3 inflammasome pathway. Biomed Pharmacother 91:1042–1052

    Article  CAS  Google Scholar 

  15. He W, Long T, Pan Q, Zhang S, Zhang Y, Zhang D, Qin G, Chen L, Zhou J (2019) Microglial NLRP3 inflammasome activation mediates IL-1β release and contributes to central sensitization in a recurrent nitroglycerin-induced migraine model. J Neuroinflamm 16:1–7

    Article  CAS  Google Scholar 

  16. Liu X, Cao J, Huang G, Zhao Q, Shen J (2019) Biological activities of artemisinin derivatives beyond malaria. Curr Top Med Chem 19:205–222

    Article  CAS  Google Scholar 

  17. Yao L, He JH, Xie H, Hu WL, Chen LJ (2009) Analyzing mechanism of artemisinin and its derivatives in anti-tumor by gene chip. China J Tradit Chin Med Pharm 24:1586–1589

    CAS  Google Scholar 

  18. Lu M, Sun L, Zhou J, Yang J (2014) Dihydroartemisinin induces apoptosis in colorectal cancer cells through the mitochondria-dependent pathway. Tumour Biol 35:5307–5314

    Article  CAS  Google Scholar 

  19. Lu M, Sun L, Zhou J, Zhao Y, Deng X (2015) Dihydroartemisinin-induced apoptosis is associated with inhibition of sarco/endoplasmic reticulum calcium ATPase activity in colorectal cancer. Cell Biochem Biophys 73:137–145

    Article  CAS  Google Scholar 

  20. Blazquez AG, Fernandezdolon M, Sanchezvicente L, Maestre AD, GomezSan Miguel AB, Alvarez M, Serrano MA, Jansen H, Efferth T, Marin JJ (2013) Novel artemisinin derivatives with potential usefulness against liver/colon cancer and viral hepatitis. Bioorg Med Chem 21:4432–4441

    Article  CAS  Google Scholar 

  21. Tan W, Feng S, Luo X, Su C, Qiu Z, Zeng H, Yan P, Yong Y, Wu M, Jiang X (2011) Artemisinin inhibits in vitro and in vivo invasion and metastasis of human hepatocellular carcinoma cells. Phytomedicine 18:158–162

    Article  CAS  Google Scholar 

  22. Gu Y, Wang X, Wang X, Yuan M, Wu G, Hu J, Tang Y, Huang C (2012) Artemisinin attenuates post-infarct myocardial remodeling by down-regulating the NF-κB pathway. Tohoku J Exp Med 227:161–170

    Article  CAS  Google Scholar 

  23. Farombi EO, Adedara IA, Abolaji AO, Anamelechi JP, Sangodele JO (2014) Sperm characteristics, antioxidant status and hormonal profile in rats treated with artemisinin. Andrologia 46:893–901

    Article  CAS  Google Scholar 

  24. Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. Dig World Core Med J 46:608–608

    Google Scholar 

  25. Shi B, Ma M, Zheng Y, Pan Y, Lin X (2019) mTOR and Beclin1: two key autophagy-related molecules and their roles in myocardial ischemia/reperfusion injury. J Cell Physiol 234:12562–12568

    Article  CAS  Google Scholar 

  26. Gu Y, Wang X, Wu G, Wang X, Cao H, Tang Y, Huang C (2012) Artemisinin suppresses sympathetic hyperinnervation following myocardial infarction via anti-inflammatory effects. J Mol Histol 43:737–743

    Article  CAS  Google Scholar 

  27. Bauernfeind F, Ablasser A, Bartok E, Kim S, Schmidburgk J, Cavlar T, Hornung V (2011) Inflammasomes: current understanding and open questions. Cell Mol Life Sci 68:765–783

    Article  CAS  Google Scholar 

  28. Martinon F, Gaide O, Pétrilli V, Mayor A, Tschopp J (2007) NALP inflammasomes central role in innate immunity. Semin Immunopathol 29:213

    Article  CAS  Google Scholar 

  29. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, Abela GS, Franchi L, Nuñez G, Schnurr M (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464:1357–1361

    Article  CAS  Google Scholar 

  30. Masanori K, Masafumi T, Takeki H, Yuichiro K, Fumitake U, Hajime M, Atsushi I, Yasuko T, Junya M, Jun K (2011) Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 123:594–604

    Article  Google Scholar 

  31. Øystein S, Trine R, LeifErik V, Marte BE, Katrine A, Finsen AV, Dahl CP, Askevold ET, Geir F, Geir C (2013) The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia–reperfusion injury. Cardiovasc Res 99:164–174

    Article  Google Scholar 

  32. Long H, Xu B, Luo Y, Luo K (2016) Artemisinin protects mice against burn sepsis through inhibiting NLRP3 inflammasome activation. Am J Emerg Med 34:772–777

    Article  Google Scholar 

  33. Lawlor KE, Vince JE (1840) Ambiguities in NLRP3 inflammasome regulation: is there a role for mitochondria? BBA 2014:1433–1440

    Google Scholar 

  34. Rongbin Z, Yazdi AS, Philippe M, Jürg T (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221

    Article  Google Scholar 

  35. Latz E (2010) The inflammasomes: mechanisms of activation and function. Curr Opin Immunol 22:28–33

    Article  CAS  Google Scholar 

  36. Zhong Z, Zhai Y, Liang S, Mori Y, Han R, Sutterwala FS, Qiao L (2013) TRPM2 links oxidative stress to NLRP3 inflammasome activation. Nat Commun 4:1611

    Article  Google Scholar 

Download references

Funding

This work was supported by The Fundamental Research Funds for the Provincial Universities (Grant No. 2017LCZX24) and the Foundation of the First Affiliated Hospital of Harbin Medical University (Grant No. 2018B017).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed toward data analysis, drafting and critically revising the paper, gave final approval of the version to be published, and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Lu Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All animal experiments were approved by the Ethics Committee of The First Affiliated Hospital of Harbin Medical University and followed the National Institutes of Health (NIH) guidelines for laboratory animals care and use (NIH Pub. No. 85-23, revised 1996).

Informed consent

All authors have read and approved the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Gao, Q., Yang, J. et al. Artemisinin suppresses myocardial ischemia–reperfusion injury via NLRP3 inflammasome mechanism. Mol Cell Biochem 474, 171–180 (2020). https://doi.org/10.1007/s11010-020-03842-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03842-3

Keywords

Navigation