Skip to main content
Log in

Mutations at the dimer interface and surface residues of Nm23-H1 metastasis suppressor affect its expression and function

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The Nm23 metastasis suppressor family is involved in a variety of physiological and pathological processes including cell proliferation, differentiation, tumorigenesis, and metastasis. Given that Nm23 proteins may function as hexamers composed of different members of the family, especially Nm23-H1 and H2 isoforms, it is pertinent to assess the importance of interface and surface residues in defining the functional characteristics of Nm23 proteins. Using molecular modeling to identify clusters of residues that may affect dimer formation and isoform specificity, mutants of Nm23-H1 were constructed and assayed for their ability to modulate cell migration. Mutations of dimer interface residues Gly22 and Lys39 affected the expression level of Nm23-H1, without altering the transcript level. The reduced protein expression was not due to increased protein degradation or altered subcellular distribution. Substitution of the surface residues of Nm23-H1 with Nm23-H2-specific Ser131 and/or Lys124/135 affected the electrophoretic mobility of the protein. Moreover, in cell migration assays, several mutants with altered surface residues exhibited impaired ability to suppress the mobility of MDA-MB-231 cells. Collectively, the study suggests that disrupting the dimer interface may affect the expression of Nm23-H1, while the residues at α-helix and β-sheet on the surface of Nm23-H1 may contribute to its metastasis suppressive function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Steeg PS, Bevilacqua G, Pozzatti R, Liotta LA, Sobel ME (1988) Altered expression of NM23, a gene associated with low tumor metastatic potential, during adenovirus 2 Ela inhibition of experimental metastasis. Cancer Res 48:6550–6554

    CAS  PubMed  Google Scholar 

  2. Rosengard AM, Krutzsch HC, Shearn A, Biggs JR, Barker E, Margulies IM, King CR, Liotta LA, Steeg PS (1989) Reduced Nm23/Awd protein in tumour metastasis and aberrant Drosophila development. Nature 342:177–180. https://doi.org/10.1038/342177a0

    Article  CAS  PubMed  Google Scholar 

  3. Steeg PS, Bevilacqua G, Sobel ME, Liotta LA (1991) Identification and characterization of differentially expressed genes in tumor metastasis: the nm23 gene. Basic Life Sci 57:355–360

    CAS  PubMed  Google Scholar 

  4. Boissan M, Dabernat S, Peuchant E, Schlattner U, Lascu I, Lacombe ML (2009) The mammalian Nm23/NDPK family: from metastasis control to cilia movement. Mol Cell Biochem 329:51–62. https://doi.org/10.1007/s11010-009-0120-7

    Article  CAS  PubMed  Google Scholar 

  5. Ma D, McCorkle JR, Kaetzel DM (2004) The metastasis suppressor NM23-H1 possesses 3'-5' exonuclease activity. J Biol Chem 279:18073–18084. https://doi.org/10.1074/jbc.M400185200

    Article  CAS  PubMed  Google Scholar 

  6. Steeg PS, Zollo M, Wieland T (2011) A critical evaluation of biochemical activities reported for the nucleoside diphosphate kinase/Nm23/Awd family proteins: opportunities and missteps in understanding their biological functions. Naunyn Schmiedebergs Arch Pharmacol 384:331–339. https://doi.org/10.1007/s00210-011-0651-9

    Article  CAS  PubMed  Google Scholar 

  7. Marino N, Nakayama J, Collins JW, Steeg PS (2012) Insights into the biology and prevention of tumor metastasis provided by the Nm23 metastasis suppressor gene. Cancer Metastasis Rev 31:593–603. https://doi.org/10.1007/s10555-012-9374-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Agarwal RP, Robison B, Parks RE Jr (1978) Nucleoside diphosphokinase from human erythrocytes. Methods Enzymol 51:376–386

    Article  CAS  Google Scholar 

  9. Hippe HJ, Lutz S, Cuello F, Knorr K, Vogt A, Jakobs KH, Wieland T, Niroomand F (2003) Activation of heterotrimeric G proteins by a high energy phosphate transfer via nucleoside diphosphate kinase (NDPK) B and Gβ subunits. Specific activation of Gsα by an NDPK B•Gβγ complex in H10 cells. J Biol Chem 278:7227–7233. https://doi.org/10.1074/jbc.M210305200

    Article  CAS  PubMed  Google Scholar 

  10. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjostedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Ponten F (2015) Proteomics. Tissue-based map of the human proteome. Science 347:1260419. https://doi.org/10.1126/science.1260419

    Article  CAS  PubMed  Google Scholar 

  11. Chang CL, Zhu XX, Thoraval DH, Ungar D, Rawwas J, Hora N, Strahler JR, Hanash SM, Radany E (1994) Nm23-H1 mutation in neuroblastoma. Nature 370:335–336. https://doi.org/10.1038/370335a0

    Article  CAS  PubMed  Google Scholar 

  12. Bosnar MH, Bago R, Cetkovic H (2009) Subcellular localization of Nm23/NDPK A and B isoforms: a reflection of their biological function? Mol Cell Biochem 329:63–71. https://doi.org/10.1007/s11010-009-0107-4

    Article  CAS  PubMed  Google Scholar 

  13. Li Y, Song J, Tong Y, Chung SK, Wong YH (2017) RGS19 upregulates Nm23-H1/2 metastasis suppressors by transcriptional activation via the cAMP/PKA/CREB pathway. Oncotarget 8:69945–69960. https://doi.org/10.18632/oncotarget.19509

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dumas C, Lascu I, Morera S, Glaser P, Fourme R, Wallet V, Lacombe ML, Veron M, Janin J (1992) X-ray structure of nucleoside diphosphate kinase. EMBO J 11:3203–3208

    Article  CAS  Google Scholar 

  15. Freije JM, Lawrence JA, Hollingshead MG, De la Rosa A, Narayanan V, Grever M, Sausville EA, Paull K, Steeg PS (1997) Identification of compounds with preferential inhibitory activity against low-Nm23-expressing human breast carcinoma and melanoma cell lines. Nat Med 3:395–401

    Article  CAS  Google Scholar 

  16. Postel EH, Weiss VH, Beneken J, Kirtane A (1996) Mutational analysis of NM23-H2/NDP kinase identifies the structural domains critical to recognition of a c-myc regulatory element. Proc Natl Acad Sci USA 93:6892–6897

    Article  CAS  Google Scholar 

  17. Lascu I, Schaertl S, Wang C, Sarfer C, Giartosio A, Briand G, Lacombe ML, Konrad M (1997) A point mutation of human nucleoside diphosphate kinase A found in aggressive neuroblastoma affects protein folding. J Biol Chem 272:15599–15602. https://doi.org/10.1074/jbc.272.25.15599

    Article  CAS  PubMed  Google Scholar 

  18. Mocan I, Georgescauld F, Gonin P, Thoraval D, Cervoni L, Giartosio A, Dabernat-Arnaud S, Crouzet M, Lacombe ML, Lascu I (2007) Protein phosphorylation corrects the folding defect of the neuroblastoma (S120G) mutant of human nucleoside diphosphate kinase A/Nm23-H1. Biochem J 403:149–156. https://doi.org/10.1042/BJ20061141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Webb PA, Perisic O, Mendola CE, Backer JM, Williams RL (1995) The crystal structure of a human nucleoside diphosphate kinase, NM23-H2. J Mol Biol 251:574–587

    Article  CAS  Google Scholar 

  20. Francois-Moutal L, Marcillat O, Granjon T (2014) Structural comparison of highly similar nucleoside-diphosphate kinases: molecular explanation of distinct membrane-binding behavior. Biochimie 105:110–118. https://doi.org/10.1016/j.biochi.2014.06.025

    Article  CAS  PubMed  Google Scholar 

  21. Marino N, Marshall JC, Steeg PS (2011) Protein-protein interactions: a mechanism regulating the anti-metastatic properties of Nm23-H1. Naunyn Schmiedebergs Arch Pharmacol 384:351–362. https://doi.org/10.1007/s00210-011-0646-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kwan DH, Wong KM, Chan AS, Yung LY, Wong YH (2015) An intact helical domain is required for Gα14 to stimulate phospholipase Cbeta. BMC Struct Biol 15:18. https://doi.org/10.1186/s12900-015-0043-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Min K, Song HK, Chang C, Kim SY, Lee KJ, Suh SW (2002) Crystal structure of human nucleoside diphosphate kinase A, a metastasis suppressor. Proteins 46:340–342

    Article  CAS  Google Scholar 

  24. Grigoryan G, Keating AE (2008) Structural specificity in coiled-coil interactions. Curr Opin Struct Biol 18:477–483. https://doi.org/10.1016/j.sbi.2008.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang L, Lee MM, Leung MM, Wong YH (2016) Regulator of G protein signaling 20 enhances cancer cell aggregation, migration, invasion and adhesion. Cell Signal 28:1663–1672. https://doi.org/10.1016/j.cellsig.2016.07.017

    Article  CAS  PubMed  Google Scholar 

  26. Fiore LS, Ganguly SS, Sledziona J, Cibull ML, Wang C, Richards DL, Neltner JM, Beach C, McCorkle JR, Kaetzel DM, Plattner R (2014) c-Abl and Arg induce cathepsin-mediated lysosomal degradation of the NM23-H1 metastasis suppressor in invasive cancer. Oncogene 33:4508–4520. https://doi.org/10.1038/onc.2013.399

    Article  CAS  PubMed  Google Scholar 

  27. Chen W, Xiong S, Li J, Li X, Liu Y, Zou C, Mallampalli RK (2015) The ubiquitin E3 ligase SCF-FBXO24 recognizes deacetylated nucleoside diphosphate kinase A to enhance its degradation. Mol Cell Biol 35:1001–1013. https://doi.org/10.1128/MCB.01185-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gallagher BC, Parrott KA, Szabo G, Otero ADS (2003) Receptor activation regulates cortical, but not vesicular localization of NDP kinase. J Cell Sci 116:3239–3250. https://doi.org/10.1242/jcs.00630

    Article  CAS  PubMed  Google Scholar 

  29. Russell RL, Geisinger KR, Mehta RR, White WL, Shelton B, Kute TE (1997) nm23˗relationship to the metastatic potential of breast carcinoma cell lines, primary human xenografts, and lymph node negative breast carcinoma patients. Cancer 79:1158–1165

    Article  CAS  Google Scholar 

  30. Kim YI, Park S, Jeoung DI, Lee H (2003) Point mutations affecting the oligomeric structure of Nm23-H1 abrogates its inhibitory activity on colonization and invasion of prostate cancer cells. Biochem Biophys Res Commun 307:281–289

    Article  CAS  Google Scholar 

  31. Song EJ, Kim YS, Chung JY, Kim E, Chae SK, Lee KJ (2000) Oxidative modification of nucleoside diphosphate kinase and its identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Biochemistry 39:10090–10097

    Article  CAS  Google Scholar 

  32. Kim MS, Jeong J, Lee KJ, Shin DH (2010) A preliminary X-ray study of human nucleoside diphosphate kinase A under oxidative conditions. Acta Crystallogr Sect F Struct Biol Cryst Commun 66:1490–1492. https://doi.org/10.1107/S1744309110036067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rodrigues CH, Pires DE, Ascher DB (2018) DynaMut: predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Res 46:W350–W355. https://doi.org/10.1093/nar/gky300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou Q, Yang X, Zhu D, Ma L, Zhu W, SunZ YQ (2007) Double mutant P96S/S120G of Nm23-H1 abrogates its NDPK activity and motility-suppressive ability. Biochem Biophys Res Commun 356:348–353. https://doi.org/10.1016/j.bbrc.2007.02.066

    Article  CAS  PubMed  Google Scholar 

  35. Lee E, Jeong J, Kim SE, Song EJ, Kang SW, Lee KJ (2009) Multiple functions of Nm23-H1 are regulated by oxido-reduction system. PLoS ONE 4:e7949. https://doi.org/10.1371/journal.pone.0007949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim MS, Jeong J, Jeong J, Shin DH, Lee KJ (2013) Structure of Nm23-H1 under oxidative conditions. Acta Crystallogr D Biol Crystallogr 69:669–680. https://doi.org/10.1107/S0907444913001194

    Article  CAS  PubMed  Google Scholar 

  37. Engel M, Seifert M, Theisinger B, Seyfert U, Welter C (1998) Glyceraldehyde-3-phosphate dehydrogenase and Nm23-H1/nucleoside diphosphate kinase A. Two old enzymes combine for the novel Nm23 protein phosphotransferase function. J Biol Chem 273:20058–20065

    Article  CAS  Google Scholar 

  38. Potel CM, Fasci D, Heck AJR (2018) Mix and match of the tumor metastasis suppressor Nm23 protein isoforms in vitro and in vivo. FEBS J 285:2856–2868. https://doi.org/10.1111/febs.14525

    Article  CAS  PubMed  Google Scholar 

  39. Hartsough MT, Clare SE, Mair M, Elkahloun AG, Sgroi D, Osborne CK, Clark G, Steeg PS (2001) Elevation of breast carcinoma Nm23-H1 metastasis suppressor gene expression and reduced motility by DNA methylation inhibition. Cancer Res 61:2320–2327

    CAS  PubMed  Google Scholar 

  40. Ouatas T, Halverson D, Steeg PS (2003) Dexamethasone and medroxyprogesterone acetate elevate Nm23-H1 metastasis suppressor gene expression in metastatic human breast carcinoma cells: new uses for old compounds. Clin Cancer Res 9:3763–3772

    CAS  PubMed  Google Scholar 

  41. Khan I, Steeg PS (2018) The relationship of NM23 (NME) metastasis suppressor histidine phosphorylation to its nucleoside diphosphate kinase, histidine protein kinase and motility suppression activities. Oncotarget 9:10185–10202. https://doi.org/10.18632/oncotarget.23796

    Article  PubMed  Google Scholar 

  42. Li Y, Tong Y, Wong YH (2015) Regulatory functions of Nm23-H2 in tumorigenesis: insights from biochemical to clinical perspectives. Naunyn Schmiedebergs Arch Pharmacol 388:243–256. https://doi.org/10.1007/s00210-014-1066-1

    Article  CAS  PubMed  Google Scholar 

  43. Abu-Taha IH, Heijman J, Hippe HJ, Wolf NM, El-Armouche A, Nikolaev VO, Schafer M, Wurtz CM, Neef S, Voigt N, Baczko I, Varro A, Muller M, Meder B, Katus HA, Spiger K, Vettel C, Lehmann LH, Backs J, Skolnik EY, Lutz S, Dobrev D, Wieland T (2017) Nucleoside diphosphate kinase-C suppresses cAMP formation in human heart failure. Circulation 135:881–897. https://doi.org/10.1161/CIRCULATIONAHA.116.022852

    Article  CAS  PubMed  Google Scholar 

  44. Neptune ER, Bourne HR (1997) Receptors induce chemotaxis by releasing the βγ subunit of Gi, not by activating Gq or Gs. Proc Natl Acad Sci USA 94:14489–14494

    Article  CAS  Google Scholar 

  45. Jung H, Seong HA, Ha H (2007) NM23-H1 tumor suppressor and its interacting partner STRAP activate p53 function. J Biol Chem 282:35293–35307. https://doi.org/10.1074/jbc.M705181200

    Article  CAS  PubMed  Google Scholar 

  46. Iwashita S, Fujii M, Mukai H, Ono Y, Miyamoto M (2004) Lbc proto-oncogene product binds to and could be negatively regulated by metastasis suppressor nm23-H2. Biochem Biophys Res Commun 320:1063–1068. https://doi.org/10.1016/j.bbrc.2004.06.067

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jacey Liu, Jason Tsang, and Wenjie Zhu for technical assistance.

Funding

This work was supported in part by grants from the University Grants Committee of Hong Kong (AoE/M-604/16), Hong Kong Research Grants Council Theme-based Research Scheme (T13-605/18-W), Innovation and Technology Commission of Hong Kong (ITCPD/17-9), and the Hong Kong Jockey Club.

Author information

Authors and Affiliations

Authors

Contributions

Methodology, validation, analysis—YL, initial draft preparation—YL and YHW, data interpretation—YL, WL and YHW, writing-review editing—WL, VS, and YHW, molecular modeling—WL, cloning and fluorescence analysis—VS, supervision—YHW, funding acquisition—YHW, conception of the study and final approval of the manuscript YHW. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yung H. Wong.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11010_2020_3836_MOESM1_ESM.pdf

Supplementary Fig. S1 Interaction of Flag-Gβγ and Nm23 surface mutants. HEK293 cells were co-transfected with 2 μg each of Flag-Gβ, HA-Gγ and Nm23-H1/2 or vector for co-immunoprecipitation (Co-IP) assays. Cells were lysed 48 h after transfection, and immunoprecipitated (IP) with anti-Flag agarose affinity gel as indicated and finally subjected to Western blot analysis. Both Nm23-H1 and H2 could form protein complexes with Gβγ in the Co-IP assay, and this ability was also observed in the KHD and HD mutants, but not in the RPN mutant. (PDF 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, W., Saini, V. et al. Mutations at the dimer interface and surface residues of Nm23-H1 metastasis suppressor affect its expression and function. Mol Cell Biochem 474, 95–112 (2020). https://doi.org/10.1007/s11010-020-03836-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03836-1

Keywords

Navigation