Skip to main content
Log in

Effect of exercise on telomere length and telomere proteins expression in mdx mice

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In Duchenne muscular dystrophy (DMD), telomere shortening has been postulated to contribute to the failure of regenerative activity promoting the premature senescence of satellite cells. The aim of the present study was to investigate the telomere length and the expression of telomeric repeat-binding factor-1 (TRF1), poly (ADP-ribose) polymerase-1 (PARP1) and mouse telomerase reverse transcriptase (MTERT) in gastrocnemius, tibialis anterior and diaphragm muscles of the murine model of DMD, the mdx mouse and whether a chronic protocol of forced exercise impacts on them. Our results confirmed a telomere shortening in mdx muscles, more evident in the diaphragm, in which exercise induced a greater shortening than in wild-type mice. Moreover, we showed for the first time in mdx an increased TRF1 and PARP1 expression and an augmented activity of MTERT, further enhanced by exercise. These results reinforce the hypothesis that a deregulation of mechanisms involved in telomere length occurs and may pave the way for the test of compounds targeting proteins modulating telomere maintenance as a novel strategy to treat dystrophinopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L et al (2010) Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol 9:77–93

    Article  PubMed  Google Scholar 

  2. Dubowitz V, Sewry CA (2007) Muscle biopsy: a practical approach, 3rd edn. Elsevier, Saunders Ltd, Philadelphia

    Google Scholar 

  3. Webster C, Blau HM (1990) Accelerated age-related decline in replicative life-span of Duchenne muscular dystrophy myoblasts: implications for cell and gene therapy. Somat Cell Mol Genet 16:557–565

    Article  CAS  PubMed  Google Scholar 

  4. Peverelli L, Testolin S, Villa L, D'Amico A, Petrini S, Favero C et al (2015) Histologic muscular history in steroid-treated and untreated patients with Duchenne dystrophy. Neurology 85:1886–1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mouly V, Aamiri A, Bigot A, Cooper RN, Di Donna S, Furling D et al (2005) The mitotic clock in skeletal muscle regeneration, disease and cell mediated gene therapy. Acta Physiol Scand 184:3–15

    Article  CAS  PubMed  Google Scholar 

  6. Cong Y-S, Wright WE, Shay JW (2002) Human telomerase and its regulation. Microbiol Mol Biol Rev 66:407–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blasco MA (2005) Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 6:611–622

    Article  CAS  PubMed  Google Scholar 

  8. Flores I, Benetti R, Blasco MA (2006) Telomerase regulation and stem cell behaviour. Curr Opin Cell Biol 18:254–260

    Article  CAS  PubMed  Google Scholar 

  9. Rodier F, Kim SH, Nijjar T, Yaswen P, Campisi J (2005) Cancer and aging: the importance of telomeres in genome maintenance. Int J Biochem Cell Biol 37:977–990

    Article  CAS  PubMed  Google Scholar 

  10. Sherr CJ, DePinho RA (2000) Cellular senescence: mitotic clock or culture shock? Cell 102:407–410

    Article  CAS  PubMed  Google Scholar 

  11. Dell’Aica I, Rossini K, Sandri M, Destro C, Carraro U (2002) Telomerase activity in regenerated normal muscles: effects of repeated injuries. Basic Appl Myol 12:73–76

    Google Scholar 

  12. Choi MH, Ow JR, Yang ND, Taneja R (2016) Oxidative stress-mediated skeletal muscle degeneration: molecules, mechanisms, and therapies. Oxid Med Cell Longev 2016:6842568

    PubMed  Google Scholar 

  13. Messina S, Bitto A, Vita GL, Aguennouz M, Irrera N, Licata N et al (2015) Modulation of neuronal nitric oxide synthase and apoptosis by the isoflavone genistein in Mdx mice. BioFactors 41:324–329

    Article  CAS  PubMed  Google Scholar 

  14. Decary S, Hamida CB, Mouly V, Barbet JP, Hentati F, Butler-Browne G (2000) Shorter telomeres in dystrophic muscle consistent with extensive regeneration in young children. Neuromuscul Disord 10:113–120

    Article  CAS  PubMed  Google Scholar 

  15. Aguennouz M, Vita GL, Messina S, Cama A, Lanzano N, Ciranni A et al (2011) Telomere shortening is associated to TRF1 and PARP1 overexpression in Duchenne muscular dystrophy. Neurobiol Aging 32:2190–2197

    Article  CAS  PubMed  Google Scholar 

  16. Lund TC, Grange RW, Lowe DA (2007) Telomere shortening in diaphragm and tibialis anterior muscles of aged mdx mice. Muscle Nerve 36:387–390

    Article  CAS  PubMed  Google Scholar 

  17. Sacco A, Mourkioti F, Tran R, Choi J, Llewellyn M, Kraft P et al (2010) Short telomeres and stem cell exhaustion model Duchenne muscular dystrophy in mdx/mTR mice. Cell 143:1059–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McGreevy JW, Hakim CH, McIntosh MA, Duan D (2015) Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. Dis Model Mech 8:195–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. De Luca A, Pierno S, Liantonio A, Cetrone M, Camerino C, Fraysse B et al (2003) Enhanced dystrophic progression in mdx mice by exercise and beneficial effects of taurine and insulin-like growth factor-1. J Pharmacol Exp Ther 304:453–463

    Article  PubMed  CAS  Google Scholar 

  20. Fraysse B, Liantonio A, Cetrone M, Burdi R, Pierno S, Frigeri A et al (2004) The alteration of calcium homeostasis in adult dystrophic mdx muscle fibers is worsened by a chronic exercise in vivo. Neurobiol Dis 17:144–154

    Article  CAS  PubMed  Google Scholar 

  21. Rolland JF, De Luca A, Burdi R, Andreetta F, Confalonieri P, Conte Camerino D (2006) Overactivity of exercise-sensitive cation channels and their impaired modulation by IGF-1 in mdx native muscle fibers: beneficial effect of pentoxifylline. Neurobiol Dis 24:466–474

    Article  CAS  PubMed  Google Scholar 

  22. Burdi R, Rolland JF, Fraysse B, Litvinova K, Cozzoli A, Giannuzzi V et al (2009) Multiple pathological events in exercised dystrophic mdx mice are targeted by pentoxifylline: outcome of a large array of in vivo and ex vivo tests. J Appl Physiol 106:1311–1324

    Article  CAS  PubMed  Google Scholar 

  23. Camerino GM, Cannone M, Giustino A, Massari AM, Capogrosso RF, Cozzoli A, De Luca A (2014) Gene expression in mdx mouse muscle in relation to age and exercise: aberrant mechanical-metabolic coupling and implications for pre-clinical studies in Duchenne muscular dystrophy. Hum Mol Genet 23:5720–5732

    Article  CAS  PubMed  Google Scholar 

  24. Ludlow AT, Witkowski S, Marshall MR, Wang J, Lima LC, Guth LM et al (2012) Chronic exercise modifies age-related telomere dynamics in a tissue-specific fashion. J Gerontol A Biol Sci Med Sci 67:911–926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460

    Article  CAS  PubMed  Google Scholar 

  26. Ponsot E, Lexell J, Kadi F (2008) Skeletal muscle telomere length is not impaired in healthy physically active old women and men. Muscle Nerve 37:467–472

    Article  CAS  PubMed  Google Scholar 

  27. Oexle K, Zwirner A, Freudenberg K, Kohlschütter A, Speer A (1997) Examination of telomere lengths in muscle tissue casts doubt on replicative aging as cause of progression in Duchenne muscular dystrophy. Pediatr Res 42:226–231

    Article  CAS  PubMed  Google Scholar 

  28. Decary S, Mouly V, Hamida CB, Sautet A, Barbet JP, Butler-Browne GS (1997) Replicative potential and telomere length in human skeletal muscle: implications for satellite cell-mediated gene therapy. Hum Gene Ther 8:1429–1438

    Article  CAS  PubMed  Google Scholar 

  29. Chang NC, Chevalier FP, Rudnicki MA (2016) Satellite cells in muscular dystrophy—lost in polarity. Trends Mol Med 22:479–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tichy ED, Sidibe DK, Tierney MT, Stec MJ, Sharifi-Sanjani M, Hosalkar H et al (2017) Single stem cell imaging and analysis reveals telomere length differences in diseased human and mouse skeletal muscles. Stem Cell Rep 9:1328–1341

    Article  CAS  Google Scholar 

  31. De Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19:2100–2110

    Article  PubMed  CAS  Google Scholar 

  32. Cook BD, Dynek JN, Chang W, Shostak G, Smith S (2002) Role for the related poly(ADP-Ribose) polymerases tankyrase 1 and 2 at human telomeres. Mol Cell Biol 22:332–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dantzer F, Giraud-Panis MJ, Jaco I, Amé JC, Schultz I, Blasco M et al (2004) Functional interaction between poly(ADP-Ribose) polymerase 2 (PARP-2) and TRF2: PARP activity negatively regulates TRF2. Mol Cell Biol 24:1595–1607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. De Boeck G, Forsyth RG, Praet M, Hogendoorn PC (2009) Telomere-associated proteins: cross-talk between telomere maintenance and telomere-lengthening mechanisms. J Pathol 217:327–344

    Article  PubMed  CAS  Google Scholar 

  35. Messina S, Altavilla D, Aguennouz M, Seminara P, Minutoli L, Monici MC et al (2006) Lipid peroxidation inhibition blunts nuclear factor-κB activation, reduces skeletal muscle degeneration, and enhances muscle function in mdx mice. Am J Pathol 168:918–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Aguilar-Quesada R, Muñoz-Gámez JA, Martín-Oliva D, Peralta-Leal A, Quiles-Pérez R, Rodríguez-Vargas JM et al (2007) Modulation of transcription by PARP-1: consequences in carcinogenesis and inflammation. Curr Med Chem 14:1179–1187

    Article  CAS  PubMed  Google Scholar 

  37. García S, Bodaño A, Pablos JL, Gómez-Reino JJ, Conde C (2008) Poly(ADP-ribose) polymerase inhibition reduces tumor necrosis factor induced inflammatory response in rheumatoid synovial fibroblasts. Ann Rheum Dis 67:631–637

    Article  PubMed  CAS  Google Scholar 

  38. Messina S, Bitto A, Aguennouz M, Mazzeo A, Migliorato A, Polito F (2009) Flavocoxid counteracts muscle necrosis and improves functional properties in mdx mice: a comparison study with methylprednisolone. Exp Neurol 220:349–358

    Article  CAS  PubMed  Google Scholar 

  39. Capogrosso RF, Mantuano P, Cozzoli A, Sanarica F, Massari AM, Conte E et al (2017) Contractile efficiency of dystrophic mdx mouse muscle: in vivo and ex vivo assessment of adaptation to exercise of functional end points. J Appl Physiol 122:828–843

    Article  CAS  PubMed  Google Scholar 

  40. Ludlow AT, Ludlow LW, Roth SM (2013) Do telomeres adapt to physiological stress? Exploring the effect of exercise on telomere length and telomere-related proteins. Biomed Res Int 2013:601368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Werner C, Hanhoun M, Widmann T, Kazakov A, Semenov A, Pöss J et al (2008) Effects of physical exercise on myocardial telomere-regulating proteins, survival pathways, and apoptosis. J Am Coll Cardiol 52:470–482

    Article  CAS  PubMed  Google Scholar 

  42. Werner C, Fürster T, Widmann T, Pöss J, Roggia C, Hanhoun M et al (2009) Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation 120:2438–2447

    Article  PubMed  Google Scholar 

  43. Pierno S, Nico B, Burdi R, Liantonio A, Didonna MP, Cippone V et al (2007) Role of tumour necrosis factor alpha, but not of cyclo-oxygenase-2-derived eicosanoids, on functional and morphological indices of dystrophic progression in mdx mice: a pharmacological approach. Neuropathol Appl Neurobiol 33:344–359

    Article  CAS  PubMed  Google Scholar 

  44. Goody MF, Henry CA (2018) A need for NAD+ in muscle development, homeostasis, and aging. Skelet Muscle 8:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Gamberi T, Fiaschi T, Valocchia E, Modesti A, Mantuano P, Rolland JF et al (2018) Proteome analysis in dystrophic mdx mouse muscle reveals a drastic alteration of key metabolic and contractile proteins after chronic exercise and the potential modulation by anti-oxidant compounds. J Proteomics 6:43–58

    Article  CAS  Google Scholar 

  46. Mohamed JS, Wilson JC, Myers MJ, Sisson KJ, Always SE (2014) Dysregulation of SIRT-1 in aging mice increases skeletal muscle fatigue by a PARP-1-dependent mechanism. Aging (Albany NY) 6:820–834

    Article  CAS  Google Scholar 

  47. Sprouse AA, Steding CE, Herbert BS (2012) Pharmaceutical regulation of telomerase and its clinical potential. J Cell Mol Med 16:1–7

    Article  CAS  PubMed  Google Scholar 

  48. Porcelli L, Quatrale AE, Mantuano P, Leo MG, Silvestris N, Rolland JF et al (2013) Optimize radiochemotherapy in pancreatic cancer: PARP inhibitors a new therapeutic opportunity. Mol Oncol 7:308–322

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Part of the project has been supported by MIUR PRIN 2015 to ADL [n. 2015MJBEM2_005]. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

GLV, MA, GV, ADL and SM contributed to the conception and design of the study. MS, FS, PM, RO, FP, NL and SR performed the experiments and analysed the data. All authors contributed to manuscript draft. All authors approved the final version.

Corresponding author

Correspondence to M’hammed Aguennouz.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vita, G.L., Aguennouz, M., Sframeli, M. et al. Effect of exercise on telomere length and telomere proteins expression in mdx mice. Mol Cell Biochem 470, 189–197 (2020). https://doi.org/10.1007/s11010-020-03761-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03761-3

Keywords

Navigation