Skip to main content

Advertisement

Log in

Mitochondrial bioenergetics, uncoupling protein-2 activity, and reactive oxygen species production in the small intestine of a TNBS-induced colitis rat model

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Inflammatory bowel disease (IBD) is often associated with a decrease in energy-dependent nutrient uptake across the jejunum that serves as the main site for absorption in the small intestine. This association has prompted us to investigate the bioenergetics underlying the alterations in jejunal absorption in 2,4,6-trinitrobenzenesulfonic acid-induced colitis in rats. We have found that mitochondrial oxygen consumption did not change in state 2 and state 3 respirations but showed an increase in state 4 respiration indicating a decrease in the respiratory control ratio of jejunal mitochondria during the peak of inflammation. This decrease in the coupling state was found to be guanosine diphosphate-sensitive, hence, implicating the involvement of uncoupling protein-2 (UCP2). Furthermore, the study has reported that the production of reactive oxygen species (ROS), known to be activators of UCP2, correlated negatively with UCP2 activity. Thus, we suggest that ROS production in the jejunum might be activating UCP2 which has an antioxidant activity, and that uncoupling of the mitochondria decreases the efficiency of energy production, leading to a decrease in energy-dependent nutrient absorption. Hence, this study is the first to account for an involvement of energy production and a role for UCP2 in the absorptive abnormalities of the small intestine in animal models of colitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Oligschlaeger Y, Yadati T, Houben T, Condello Olivan CM, Shiri-Sverdlov R (2019) Inflammatory bowel disease: a stressed, "gut/feeling". Cells. https://doi.org/10.3390/cells8070659

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ordas I, Eckmann L, Talamini M, Baumgart DC, Sandborn WJ (2012) Ulcerative colitis. Lancet 380:1606–1619

    PubMed  Google Scholar 

  3. Binder HJ, Ptak T (1970) Jejunal absorption of water and electrolytes in inflammatory bowel disease. J Lab Clin Med 76:915–924

    CAS  PubMed  Google Scholar 

  4. Barada KA, Kafrouni MI, Khoury CI, Saade NE, Mourad FH, Szabo SS, Nassar CF (2001) Experimental colitis decreases rat jejunal amino acid absorption: role of capsaicin sensitive primary afferents. Life Sci 69:3121–3131

    CAS  PubMed  Google Scholar 

  5. Mourad FH, Barada KA, Bou Matar D, Saade NE (2011) Jejunal glucose absorption is decreased in rat models of colitis through extrinsic neuronal mechanisms. J Crohns Colitis 5:S22

    Google Scholar 

  6. Santhanam S, Venkatraman A, Ramakrishna BS (2007) Impairment of mitochondrial acetoacetyl CoA thiolase activity in the colonic mucosa of patients with ulcerative colitis. Gut 56:1543–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sifroni KG, Damiani CR, Stoffel C, Cardoso MR, Ferreira GK, Jeremias IC, Rezin GT, Scaini G, Schuck PF, Dal-Pizzol F, Streck EL (2010) Mitochondrial respiratory chain in the colonic mucosal of patients with ulcerative colitis. Mol Cell Biochem 342:111–115

    CAS  PubMed  Google Scholar 

  8. Santhanam S, Rajamanickam S, Motamarry A, Ramakrishna BS, Amirtharaj JG, Ramachandran A, Pulimood A, Venkatraman A (2012) Mitochondrial electron transport chain complex dysfunction in the colonic mucosa in ulcerative colitis. Inflamm Bowel Dis 18:2158–2168

    PubMed  Google Scholar 

  9. Liu DY, Pan CS, Liu YY, Wei XH, Zhou CM, Sun K, He K, Li C, Yan L, Fan JY, Wang CS, Hibi T, Liu HN, Han JY (2013) Huang Qi Jian Zhong pellet attenuates TNBS-induced colitis in rats via mechanisms involving improvement of energy metabolism. Evid Based Complement Alternat Med 2013:574629

    PubMed  PubMed Central  Google Scholar 

  10. Ahn BO, Ko KH, Oh TY, Cho H, Kim WB, Lee KJ, Cho SW, Hahm KB (2001) Efficacy of use of colonoscopy in dextran sulfate sodium induced ulcerative colitis in rats: the evaluation of the effects of antioxidant by colonoscopy. Int J Colorectal Dis 16:174–181

    CAS  PubMed  Google Scholar 

  11. Reifen R, Nissenkorn A, Matas Z, Bujanover Y (2004) 5-ASA and lycopene decrease the oxidative stress and inflammation induced by iron in rats with colitis. J Gastroenterol 39:514–519

    CAS  PubMed  Google Scholar 

  12. Lenaz G (2001) The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life 52:159–164

    CAS  PubMed  Google Scholar 

  13. Naik E, Dixit VM (2011) Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J Exp Med 208:417–420

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Myant KB, Cammareri P, McGhee EJ, Ridgway RA, Huels DJ, Cordero JB, Schwitalla S, Kalna G, Ogg EL, Athineos D, Timpson P, Vidal M, Murray GI, Greten FR, Anderson KI, Sansom OJ (2013) ROS production and NF-kappaB activation triggered by RAC1 facilitate WNT-driven intestinal stem cell proliferation and colorectal cancer initiation. Cell Stem Cell 12:761–773

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Galluzzi L, Kepp O, Kroemer G (2012) Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol 13:780–788

    CAS  PubMed  Google Scholar 

  16. Weinberg SE, Sena LA, Chandel NS (2015) Mitochondria in the regulation of innate and adaptive immunity. Immunity 42:406–417

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Osborn O, Olefsky JM (2012) The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med 18:363–374

    CAS  PubMed  Google Scholar 

  18. Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM, Cline GW, Phillips AJ, Medzhitov R (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513:559–563

    CAS  PubMed  PubMed Central  Google Scholar 

  19. West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM, Lang SM, Bestwick M, Duguay BA, Raimundo N, MacDuff DA, Kaech SM, Smiley JR, Means RE, Iwasaki A, Shadel GS (2015) Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520:553–557

    PubMed  PubMed Central  Google Scholar 

  20. Esworthy RS, Aranda R, Martin MG, Doroshow JH, Binder SW, Chu FF (2001) Mice with combined disruption of Gpx1 and Gpx2 genes have colitis. Am J Physiol Gastrointest Liver Physiol 281:848

    Google Scholar 

  21. Echtay KS (2007) Mitochondrial uncoupling proteins—what is their physiological role? Free Radic Biol Med 43:1351–1371

    CAS  PubMed  Google Scholar 

  22. Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N (2004) Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 37:755–767

    CAS  PubMed  Google Scholar 

  23. Echtay KS, Brand MD (2007) 4-hydroxy-2-nonenal and uncoupling proteins: an approach for regulation of mitochondrial ROS production. Redox Rep 12:26–29

    CAS  PubMed  Google Scholar 

  24. Yu X, Wieczorek S, Franke A, Yin H, Pierer M, Sina C, Karlsen TH, Boberg KM, Bergquist A, Kunz M, Witte T, Gross WL, Epplen JT, Alarcon-Riquelme ME, Schreiber S, Ibrahim SM (2009) Association of UCP2-866 G/A polymorphism with chronic inflammatory diseases. Genes Immun 10:601–605

    CAS  PubMed  Google Scholar 

  25. Antoniou E, Margonis GA, Angelou A, Pikouli A, Argiri P, Karavokyros I, Papalois A, Pikoulis E (2016) The TNBS-induced colitis animal model: an overview. Ann Med Surg 11:9–15

    Google Scholar 

  26. Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace JL (1989) Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology 96:795–803

    CAS  PubMed  Google Scholar 

  27. Lawrence CB, Davies NT (1986) A novel, simple and rapid method for the isolation of mitochondria which exhibit respiratory control, from rat small intestinal mucosa. Biochim Biophys Acta 848:35–40

    CAS  PubMed  Google Scholar 

  28. Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766

    CAS  PubMed  Google Scholar 

  29. Nagatake T, Fujita H, Minato N, Hamazaki Y (2014) Enteroendocrine cells are specifically marked by cell surface expression of claudin-4 in mouse small intestine. PLoS ONE 9:e90638

    PubMed  PubMed Central  Google Scholar 

  30. von Furstenberg RJ, Gulati AS, Baxi A, Doherty JM, Stappenbeck TS, Gracz AD, Magness ST, Henning SJ (2011) Sorting mouse jejunal epithelial cells with CD24 yields a population with characteristics of intestinal stem cells. Am J Physiol Gastrointest Liver Physiol 300:409

    Google Scholar 

  31. Amann M, Friedrich M, Lutterbuese P, Vieser E, Lorenczewski G, Petersen L, Brischwein K, Kufer P, Kischel R, Baeuerle PA, Schlereth B (2009) Therapeutic window of an EpCAM/CD3-specific BiTE antibody in mice is determined by a subpopulation of EpCAM-expressing lymphocytes that is absent in humans. Cancer Immunol Immunother 58:95–109

    CAS  PubMed  Google Scholar 

  32. Goodyear AW, Kumar A, Dow S, Ryan EP (2014) Optimization of murine small intestine leukocyte isolation for global immune phenotype analysis. J Immunol Methods 405:97–108

    CAS  PubMed  Google Scholar 

  33. Reuter BK, Asfaha S, Buret A, Sharkey KA, Wallace JL (1996) Exacerbation of inflammation-associated colonic injury in rat through inhibition of cyclooxygenase-2. J Clin Invest 98:2076–2085

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Jekabsons MB, Echtay KS, Brand MD (2002) Nucleotide binding to human uncoupling protein-2 refolded from bacterial inclusion bodies. Biochem J 366:565–571

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Echtay KS, Murphy MP, Smith RA, Talbot DA, Brand MD (2002) Superoxide activates mitochondrial uncoupling protein 2 from the matrix side. Studies using targeted antioxidants. J Biol Chem 277:47129–47135

    CAS  PubMed  Google Scholar 

  36. Echtay KS, Roussel D, St-Pierre J, Jekabsons MB, Cadenas S, Stuart JA, Harper JA, Roebuck SJ, Morrison A, Pickering S, Clapham JC, Brand MD (2002) Superoxide activates mitochondrial uncoupling proteins. Nature 415:96–99

    CAS  PubMed  Google Scholar 

  37. Zetzel L, Banks BM, SagalI E (1942) Intestinal absorption of an amino-acid mixture in patients with chronic idiopathic ulcerative colitis and entero-colitis. Am J Digest Dis 9:350–352

    CAS  Google Scholar 

  38. Mourad FH, Barada KA, Bou Rached NA, Khoury CI, Saade NE, Nassar CF (2006) Inhibitory effect of experimental colitis on fluid absorption in rat jejunum: role of the enteric nervous system, VIP, and nitric oxide. Am J Physiol Gastrointest Liver Physiol 290:262

    Google Scholar 

  39. Mourad FH, Barada KA, Saade NE (2017) Impairment of small intestinal function in ulcerative colitis: role of enteric innervation. J Crohns Colitis 11:369–377

    PubMed  Google Scholar 

  40. Bar F, Bochmann W, Widok A, von Medem K, Pagel R, Hirose M, Yu X, Kalies K, Konig P, Bohm R, Herdegen T, Reinicke AT, Buning J, Lehnert H, Fellermann K, Ibrahim S, Sina C (2013) Mitochondrial gene polymorphisms that protect mice from colitis. Gastroenterology 145:1055–1063.e3

    PubMed  Google Scholar 

  41. Roediger WE (1980) The colonic epithelium in ulcerative colitis: an energy-deficiency disease? Lancet 2:712–715

    CAS  PubMed  Google Scholar 

  42. Kameyama J, Narui H, Inui M, Sato T (1984) Energy level in large intestinal mucosa in patients with ulcerative colitis. Tohoku J Exp Med 143:253–254

    CAS  PubMed  Google Scholar 

  43. Dankowski T, Schroder T, Moller S, Yu X, Ellinghaus D, Bar F, Fellermann K, Lehnert H, Schreiber S, Franke A, Sina C, Ibrahim SM, Konig IR (2016) Male-specific association between MT-ND4 11719 A/G polymorphism and ulcerative colitis: a mitochondria-wide genetic association study. BMC Gastroenterol 16:118–121

    PubMed  PubMed Central  Google Scholar 

  44. Lewis K, Caldwell J, Phan V, Prescott D, Nazli A, Wang A, Soderholm JD, Perdue MH, Sherman PM, Mckay DM (2008) Decreased epithelial barrier function evoked by exposure to metabolic stress and nonpathogenic E. coli is enhanced by TNF-alpha. Am J Physiol Gastrointest Liver Physiol 294:669

    Google Scholar 

  45. Brand MD, Buckingham JA, Esteves TC, Green K, Lambert AJ, Miwa S, Murphy MP, Pakay JL, Talbot DA, Echtay KS (2004) Mitochondrial superoxide and aging: uncoupling-protein activity and superoxide production. Biochem Soc Symp 71:203–213

    CAS  Google Scholar 

  46. Guan L, Gong D, Tian N, Zou Y (2005) Uncoupling protein 2 involved in protection of glucagon-like peptide 2 in small intestine with ischemia-reperfusion injury in mice. Dig Dis Sci 50:554–560

    CAS  PubMed  Google Scholar 

  47. Echtay KS, Esteves TC, Pakay JL, Jekabsons MB, Lambert AJ, Portero-Otin M, Pamplona R, Vidal-Puig AJ, Wang S, Roebuck SJ, Brand MD (2003) A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J 22:4103–4110

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Teshima Y, Akao M, Jones SP, Marban E (2003) Uncoupling protein-2 overexpression inhibits mitochondrial death pathway in cardiomyocytes. Circ Res 93:192–200

    CAS  PubMed  Google Scholar 

  49. Negre-Salvayre A, Hirtz C, Carrera G, Cazenave R, Troly M, Salvayre R, Penicaud L, Casteilla L (1997) A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation. FASEB J 11:809–815

    CAS  PubMed  Google Scholar 

  50. Lee SC, Robson-Doucette CA, Wheeler MB (2009) Uncoupling protein 2 regulates reactive oxygen species formation in islets and influences susceptibility to diabetogenic action of streptozotocin. J Endocrinol 203:33–43

    CAS  PubMed  Google Scholar 

  51. Mailloux RJ, Harper ME (2011) Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic Biol Med 51:1106–1115

    CAS  PubMed  Google Scholar 

  52. Barada KA, Mourad FH, Sawah SI, Khoury C, Safieh-Garabedian B, Nassar CF, Saade NE (2006) Localized colonic inflammation increases cytokine levels in distant small intestinal segments in the rat. Life Sci 79:2032–2042

    CAS  PubMed  Google Scholar 

  53. Hardin J, Kroeker K, Chung B, Gall DG (2000) Effect of proinflammatory interleukins on jejunal nutrient transport. Gut 47:184–191

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kreydiyyeh SI, Al-Sadi R (2002) The mechanism by which interleukin-1 beta reduces net fluid absorption from the rat colon. Eur Cytokine Netw 13:358–363

    CAS  PubMed  Google Scholar 

  55. Wu CJ, Mannan P, Lu M, Udey MC (2013) Epithelial cell adhesion molecule (EpCAM) regulates claudin dynamics and tight junctions. J Biol Chem 288:12253–12268

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Schnell U, Cirulli V, Giepmans BN (2013) EpCAM: structure and function in health and disease. Biochim Biophys Acta 1828:1989–2001

    CAS  PubMed  Google Scholar 

  57. Trzpis M, McLaughlin PM, de Leij LM, Harmsen MC (2007) Epithelial cell adhesion molecule: more than a carcinoma marker and adhesion molecule. Am J Pathol 171:386–395

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kozan PA, McGeough MD, Pena CA, Mueller JL, Barrett KE, Marchelletta RR, Sivagnanam M (2015) Mutation of EpCAM leads to intestinal barrier and ion transport dysfunction. J Mol Med 93:535–545

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Samira Osman for technical assistance. This study was funded by the Faculty of Medicine and Medical Sciences, University of Balamand.

Author information

Authors and Affiliations

Authors

Contributions

MK, GMB, and KSE designed the study. YAO carried out the experiments. YAO, MK, SB, GMB, and KSE analyzed the data. YAO wrote the first draft of the manuscript and MK, SB, GMB, and KSE revised it. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Karim S. Echtay.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Ojaimi, Y., Khachab, M., Bazzi, S. et al. Mitochondrial bioenergetics, uncoupling protein-2 activity, and reactive oxygen species production in the small intestine of a TNBS-induced colitis rat model. Mol Cell Biochem 470, 87–98 (2020). https://doi.org/10.1007/s11010-020-03749-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03749-z

Keywords

Navigation