Skip to main content

Advertisement

Log in

Regulation of poly ADP-ribosylation of VEGF by an interplay between PARP-16 and TNKS-2

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The biological activity of vascular endothelial growth factor (VEGF), the major cytokine regulating the process of angiogenesis is tightly controlled at multiple levels including processes involving post-translational modification such as ADP-ribosylation and glycosylation. ADP-ribosylation is a reversible NAD+-dependent modification, catalyzed by poly ADP-ribose polymerase (PARP) or ADP-ribosyl transferase (ADPRTs) and has been reported by us and others as a modification that reduces the biological activity of VEGF. The factors responsible for any such modification should occur in the secretory pathway, i.e., in the endoplasmic reticulum and Golgi. Our investigation carried out in this direction revealed that ADP-ribosylation of VEGF requires the interplay between members of poly ADP-ribose polymerase (PARP) family in the secretory pathway, viz., ER associated PARP-16 and Golgi associated Tankyrase-2 (TNKS-2). The data presented in this manuscript suggest that PARP-16 catalysis the priming mono ADP-ribosylation of VEGF which is a prerequisite for poly ADP-ribosylation of VEGF by TNKS-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Otrock ZK, Makarem JA, Shamseddine AI (2007) Vascular endothelial growth factor family of ligands and receptors. Blood Cells Mol Dis 38:258–268. https://doi.org/10.1016/j.bcmd.2006.12.003

    Article  CAS  PubMed  Google Scholar 

  2. Wiesmann C, Christinger HW, Cochran AG, Cunningham BC, Fairbrother WJ, Keenan CJ, de Vos AM (1998) Crystal structure of the complex between VEGF and a receptor-blocking peptide. Biochemistry 37:17765–17772. https://doi.org/10.1021/bi9819327

    Article  CAS  PubMed  Google Scholar 

  3. Neufeld G, Tessler S, Gitay-Goren H, Cohen T, Levi BZ (1994) Vascular endothelial growth factor and its receptors. Prog Growth Factor Res 5:89–97. https://doi.org/10.1016/0955-2235(94)90019-1

    Article  CAS  PubMed  Google Scholar 

  4. Kumar VS, Viji RI, Kiran MS, Sudhakaran PR (2007) Endothelial cell response to lactate: implication of PAR modification of VEGF. J Cell Physiol 211:477–485. https://doi.org/10.1002/jcp.20955

    Article  CAS  PubMed  Google Scholar 

  5. Xiong M, Elson G, Legarda D, Leibovich SJ (1998) Production of vascular endothelial growth factor by murine macrophages: regulation by hypoxia, lactate, and the inducible nitric oxide synthase pathway. Am J Pathol 153:587–598. https://doi.org/10.1016/S0002-9440(10)65601-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Osago H, Terashima M, Hara N, Yamada K, Tsuchiya MA (2008) New detection method for arginine-specific ADP-ribosylation of protein—a combinational use of anti-ADP-ribosylarginine antibody and ADP-ribosylarginine hydrolase. J Biochem Biophys Methods 70:1014–1019. https://doi.org/10.1016/j.jprot.2007.11.008

    Article  CAS  PubMed  Google Scholar 

  7. Corda D, Di Girolamo M (2003) Functional aspects of protein mono-ADP-ribosylation. EMBO J 22:1953–1958. https://doi.org/10.1093/emboj/cdg209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jwa M, Chang P (2012) PARP16 is a tail-anchored endoplasmic reticulum protein required for the PERK-and IRE1α-mediated unfolded protein response. Nat Cell Biol 14:1223. https://doi.org/10.1038/ncb2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Koch Nolte F, Fischer S, Haag F, Ziegler M (2011) Compartmentation of NAD+-dependent signalling. FEBS Lett 585:1651–1656. https://doi.org/10.1016/j.febslet.2011.03.04

    Article  CAS  PubMed  Google Scholar 

  10. Smith S, Giriat I, Schmitt A, De Lange T (1998) Tankyrase, a poly (ADP-ribose) polymerase at human telomeres. Science 282:1484–1487. https://doi.org/10.1126/science.282.5393.1484

    Article  CAS  PubMed  Google Scholar 

  11. Gelmini S, Quattrone S, Malentacchi F, Villari D, Travaglini F, Giannarini G, Orlando C (2007) Tankyrase-1 mRNA expression in bladder cancer and paired urine sediment: preliminary experience. Clin Chem Lab Med 45:862–866. https://doi.org/10.1515/CCLM.2007.133

    Article  CAS  PubMed  Google Scholar 

  12. Gelmini S, Poggesi M, Pinzani P, Mannurita SC, Cianchi F, Valanzano R, Orlando C (2006) Distribution of Tankyrase-1 mRNA expression in colon cancer and its prospective correlation with progression stage. Oncol Rep 16:1261–1266. https://doi.org/10.3892/ijo.2016.3360

    Article  CAS  PubMed  Google Scholar 

  13. Gelmini S, Poggesi M, Distante V, Bianchi S, Simi L, Luconi M, Raggi CC, Cataliotti L, Pazzagli M, Orlando C (2004) Tankyrase, a positive regulator of telomere elongation, is over expressed in human breast cancer. Cancer Lett 216:81–87. https://doi.org/10.1016/j.canlet.2004.05.010

    Article  CAS  PubMed  Google Scholar 

  14. Gao J, Zhang J, Long Y, Tian Y, Lu X (2011) Expression of tankyrase 1 in gastric cancer and its correlation with telomerase activity. Pathol Oncol Res 17:685–690. https://doi.org/10.1007/s12253-011-9369-8

    Article  CAS  PubMed  Google Scholar 

  15. La Torre D, Conti A, De Pasquale MG, Romeo S, Angileri FF, Cardali S, Tomasello GA (2013) Telomere length modulation in human astroglial brain tumors. PLoS ONE 8:e64296. https://doi.org/10.1371/journal.pone.0064296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Busch AM, Johnson KC, Stan RV, Sanglikar A, Ahmed Y, Dmitrovsky E, Freemantle SJ (2013) Evidence for tankyrases as antineoplastic targets in lung cancer. BMC cancer 13:211. https://doi.org/10.1186/1471-2407-13-211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kunhiraman H, Edatt L, Thekkeveedu S, Poyyakkara A, Raveendran V, Kiran MS, Sudhakaran P, Kumar SV (2017) 2-Deoxy Glucose modulates expression and biological activity of VEGF in a SIRT-1 dependent mechanism. J Cell Biochem 118:252–262

    Article  CAS  Google Scholar 

  18. Ribatti D, Gualandris A, Bastaki M, Vacca A, Iurlaro M, Roncali L, Presta M (1997) New model for the study of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane: the gelatin sponge/chorioallantoic membrane assay. J Vasc Res 34:455–463. https://doi.org/10.1159/000159256

    Article  CAS  PubMed  Google Scholar 

  19. Engvall E, Perlmann P (1971) Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry 8:871–874. https://doi.org/10.1016/0019-2791(71)90454-X

    Article  CAS  PubMed  Google Scholar 

  20. Osago H, Terashima M, Hara N, Yamada K, Tsuchiya M (2008) A new detection method for arginine-specific ADP-ribosylation of protein—a combinational use of anti-ADP-ribosylarginine antibody and ADP-ribosylarginine hydrolase. J Biochem Biophys Methods 70:1014–1019. https://doi.org/10.1016/j.jprot.2007.11.008

    Article  CAS  PubMed  Google Scholar 

  21. Liu C, Yu X (2015) ADP-ribosyl transferases and poly ADP-ribosylation. Curr Protein Pept Sci 16:491–501. https://doi.org/10.2174/1389203716666150504122435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Poly BA (2005) The most elaborate metabolite of NADþ. FEBS J 272:4576–4589. https://doi.org/10.1111/j.1742-4658.2005.04864.x

    Article  CAS  Google Scholar 

  23. Leung AK (2014) Poly (ADP-ribose): an organizer of cellular architecture. J Cell Biol 205:613–619. https://doi.org/10.1083/jcb.201402114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Di Paola S, Micaroni M, Di Tullio G, Buccione R, Di Girolamo M (2012) PARP16/ARTD15 is a novel endoplasmic-reticulum-associated mono-ADP-ribosyltransferase that interacts with, and modifies karyopherin-ß1. PLoS ONE 7:e37352. https://doi.org/10.1371/journal.pone.0037352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Di Girolamo M, Fabrizio G, Salvatore Scarpa E, Di Paola S (2013) NAD+-dependent enzymes at the endoplasmic reticulum. Curr Top Med Chem 13:3001–3010. https://doi.org/10.2174/15680266113136660214

    Article  CAS  PubMed  Google Scholar 

  26. Li N, Chen J (2014) ADP-ribosylation: activation, recognition, and removal. Mol Cells 37:9–16

    Article  CAS  Google Scholar 

  27. Lyons RJ, Deane R, Lynch DK, Zheng-Sheng JY, Sanderson GM, Eyre HJ, Sutherland GR, Daly RJ (2001) Identification of a novel human Tankyrase through its interaction with the adapter protein Grb14. J Biol Chem 276:17172–17180. https://doi.org/10.1074/jbc.M009756200

    Article  CAS  PubMed  Google Scholar 

  28. Cook BD, Dynek JN, Chang W, Shostak G, Smith S (2002) Role for the related poly (ADP-Ribose) polymerases tankyrase 1 and 2 at human telomeres. Mol Cell Biol 22:332–342. https://doi.org/10.1128/MCB.22.1.332-342.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hassa PO, Hottiger MO (2008) The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front Biosci 13(13):3046–3082

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Financial assistance received from DST-SERB (SB/YS/LS-367/2013) is gratefully acknowledged. Financial assistance from DST, Govt. of India in the form of fellowship to Vishnu is also thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Sameer Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 718 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunhiraman, H., Ramachandran, V., Edatt, L. et al. Regulation of poly ADP-ribosylation of VEGF by an interplay between PARP-16 and TNKS-2. Mol Cell Biochem 471, 15–27 (2020). https://doi.org/10.1007/s11010-020-03746-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03746-2

Keywords

Navigation