Skip to main content

Advertisement

Log in

CircularRNA-9119 promotes the proliferation of cervical cancer cells by sponging miR-126/MDM4

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the role of circular RNA-9119 (circ9119) in cervical cancer (CC) and the microRNA-126-3p (miR-126)-based molecular mechanism underlying CC. circ9119 and MDM4 were initially overexpressed, and miR-126 expression was found to be reduced in CC cells and tissues. A series of mimics, inhibitors, overexpressing plasmids or siRNAs were introduced into CC cells to alter the circ9119, miR-126, and MDM4 expressions. Cell-based experiments showed that silencing of circ9119 or the upregulation of miR-126 resulted in suppressed proliferation, accompanied by the induced apoptosis of CC cells. The dual-luciferase reporter assay highlighted that circ9119 functioned as an miR-126 ceRNA to increase MDM4 expression. In vivo experiments further confirmed the suppressed tumor growth caused by circ9119 silencing. Our findings demonstrated that circ9119 acts as an oncogene in CC. Our study provides evidence for targeting circ9119 for the treatment of CC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chaturvedi AK (2010) Beyond cervical cancer: burden of other HPV-related cancers among men and women. J Adolesc Health 46:S20–S26

    Article  Google Scholar 

  2. Pimple S, Mishra G, Shastri S (2016) Global strategies for cervical cancer prevention. Curr Opin Obstet Gynecol 28:4–10

    Article  Google Scholar 

  3. Wentzensen N, Schiffman M (2018) Accelerating cervical cancer control and prevention. Lancet Public Health 3:e6–e7

    Article  Google Scholar 

  4. Stewart E, McEvoy J, Wang H et al (2018) Identification of therapeutic targets in rhabdomyosarcoma through integrated genomic, epigenomic, and proteomic analyses. Cancer Cell 34(411–426):e19

    Google Scholar 

  5. Sankaranarayanan R, Ferlay J (2006) Worldwide burden of gynaecological cancer: the size of the problem. Best Pract Res Clin Obstet Gynaecol 20:207–225

    Article  CAS  Google Scholar 

  6. Liu X, Zhang L, Liu Y et al (2018) Circ-8073 regulates CEP55 by sponging miR-449a to promote caprine endometrial epithelial cells proliferation via the PI3K/AKT/mTOR pathway. Biochim Biophys Acta (BBA)-Mol Cell Res 1865:1130–1147

    Article  CAS  Google Scholar 

  7. He Q, Tian L, Jiang H et al (2017) Identification of laryngeal cancer prognostic biomarkers using an inflammatory gene-related, competitive endogenous RNA network. Oncotarget 8:9525

    Article  Google Scholar 

  8. Huang J, Zhou Q, Li Y (2019) Circular RNAs in gynecological disease: promising biomarkers and diagnostic targets. Biosci Rep. https://doi.org/10.1042/BSR20181641

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chaichian S, Shafabakhsh R, Mirhashemi SM et al (2019) Circular RNAs: a novel biomarker for cervical cancer. J Cell Physiol 235(2):718–724

    Article  Google Scholar 

  10. Tang Q, Chen Z, Zhao L (2019) Circular RNA hsa_circ_0000515 acts as a miR-326 sponge to promote cervical cancer progression through up-regulation of ELK1. Aging (Albany NY) 11(22):9982–9999

    Article  CAS  Google Scholar 

  11. Chen RX, Liu HL, Yang LL et al (2019) Circular RNA circRNA_0000285 promotes cervical cancer development by regulating FUS. Eur Rev Med Pharmacol Sci 23:8771–8778

    PubMed  Google Scholar 

  12. Ma H, Tian T, Liu X et al (2019) Upregulated circ_0005576 facilitates cervical cancer progression via the miR-153/KIF20A axis. Biomed Pharmacother 118:109311

    Article  CAS  Google Scholar 

  13. Fujii T, Shimada K, Nakai T et al (2018) MicroRNAs in smoking-related carcinogenesis: biomarkers, functions, and therapy. J Clin Med 7:98

    Article  Google Scholar 

  14. Rong D, Sun H, Li Z et al (2017) An emerging function of circRNA-miRNAs-mRNA axis in human diseases. Oncotarget 8:73271

    Article  Google Scholar 

  15. Xu J, Wang H, Wang H et al (2019) The inhibition of miR-126 in cell migration and invasion of cervical cancer through regulating ZEB1. Hereditas 156:11

    Article  Google Scholar 

  16. Pecorelli S (2009) Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium. Int J Gynecol Obstet 105:103–104

    Article  Google Scholar 

  17. Friedman RC, Farh KK-H, Burge CB et al (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  CAS  Google Scholar 

  18. Yu Q, Liu S-L, Wang H et al (2013) miR-126 Suppresses the proliferation of cervical cancer cells and alters cell sensitivity to the chemotherapeutic drug bleomycin. Asian Pac J Cancer Prev 14:6569–6572

    Article  Google Scholar 

  19. Huang T, Chu TJO (2014) Repression of miR-126 and upregulation of adrenomedullin in the stromal endothelium by cancer-stromal cross talks confers angiogenesis of cervical cancer. Oncogene 33:3636

    Article  CAS  Google Scholar 

  20. Li X-M, Wang A-M, Zhang J et al (2011) Down-regulation of miR-126 expression in colorectal cancer and its clinical significance. Med Oncol 28:1054–1057

    Article  Google Scholar 

  21. Hansen TB, Jensen TI, Clausen BH et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384

    Article  CAS  Google Scholar 

  22. Qin L, Lin J, Xie X (2019) CircRNA-9119 suppresses poly I: C induced inflammation in Leydig and Sertoli cells via TLR3 and RIG-I signal pathways. Mol Med 25:28

    Article  Google Scholar 

  23. Lin S, Gregory RI (2015) MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 15:321

    Article  CAS  Google Scholar 

  24. Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  CAS  Google Scholar 

  25. Fish JE, Santoro MM, Morton SU et al (2008) miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15:272–284

    Article  CAS  Google Scholar 

  26. Lagos-Quintana M, Rauhut R, Yalcin A et al (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739

    Article  CAS  Google Scholar 

  27. Landgraf P, Rusu M, Sheridan R et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414

    Article  CAS  Google Scholar 

  28. Feng R, Chen X, Yu Y et al (2010) miR-126 functions as a tumour suppressor in human gastric cancer. Cancer Lett 298:50–63

    Article  CAS  Google Scholar 

  29. Zhou Y, Feng X, Liu YL et al (2013) Down-regulation of miR-126 is associated with colorectal cancer cells proliferation, migration and invasion by targeting IRS-1 via the AKT and ERK1/2 signaling pathways. PLoS ONE 8:e81203

    Article  Google Scholar 

  30. Du C, Lv Z, Cao L et al (2014) MiR-126-3p suppresses tumor metastasis and angiogenesis of hepatocellular carcinoma by targeting LRP6 and PIK3R2. J Transl Med 12:259

    Article  Google Scholar 

  31. Hamada S, Satoh K, Fujibuchi W et al (2012) MiR-126 acts as a tumor suppressor in pancreatic cancer cells via the regulation of ADAM9. Mol Cancer Res 10:3–10

    Article  CAS  Google Scholar 

  32. Otsubo T, Akiyama Y, Hashimoto Y et al (2011) MicroRNA-126 inhibits SOX2 expression and contributes to gastric carcinogenesis. PLoS ONE 6:e16617

    Article  CAS  Google Scholar 

  33. Yang Z, Wang R, Zhang T et al (2015) MicroRNA-126 regulates migration and invasion of gastric cancer by targeting CADM1. Int J Clin Exp Pathol 8:8869–8880

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Fang M, Simeonova I, Bardot B et al (2014) Mdm4 loss in mice expressing a p53 hypomorph alters tumor spectrum without improving survival. Oncogene 33:1336

    Article  CAS  Google Scholar 

  35. Hoffman Y, Pilpel Y, Oren M (2014) microRNAs and Alu elements in the p53–Mdm2–Mdm4 regulatory network. J Mol Cell Biol 6:192–197

    Article  CAS  Google Scholar 

  36. Swetzig WM, Wang J, Das GM (2016) Estrogen receptor alpha (ERα/ESR1) mediates the p53-independent overexpression of MDM4/MDMX and MDM2 in human breast cancer. Oncotarget 7:16049

    Article  Google Scholar 

  37. Kriegmair MC, Balk M, Wirtz R et al (2016) Expression of the p53 inhibitors MDM2 and MDM4 as outcome predictor in muscle-invasive bladder cancer. Anticancer Res 36:5205–5213

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghui Tian.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

The procedures conducted in this study were approved by the Ethics Committee of Linyi Central Hospital. Animal experiments were performed under the approval of the Animal Ethics Committee of Linyi Central Hospital.

Informed consent

All subjects signed informed consent forms before their enrollment in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Xu, Z. & Fu, J. CircularRNA-9119 promotes the proliferation of cervical cancer cells by sponging miR-126/MDM4. Mol Cell Biochem 470, 53–62 (2020). https://doi.org/10.1007/s11010-020-03745-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03745-3

Keywords

Navigation