Skip to main content
Log in

CCAAT/enhancer-binding protein beta (C/EBPβ) knockdown reduces inflammation, ER stress, and apoptosis, and promotes autophagy in oxLDL-treated RAW264.7 macrophage cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Atherosclerosis is associated with deregulated cholesterol metabolism and formation of macrophage foam cells. CCAAT/enhancer-binding protein beta (C/EBPβ) is a transcription factor, and its inhibition has recently been shown to prevent atherosclerosis development and foam cell formation. However, whether C/EBPβ regulates inflammation, endoplasmic reticulum (ER) stress, and apoptosis, in macrophage foam cells and its underlying molecular mechanism remains unknown. Here, we investigated the effect of C/EBPβ knockdown on proteins and genes implicated in inflammation, ER stress, apoptosis, and autophagy in macrophage foam cells. RAW264.7 macrophage cells were transfected with control and C/EBPβ-siRNA and then treated with nLDL and oxLDL. Key proteins and genes involved in inflammation, ER stress, apoptosis, and autophagy were analyzed by western blot and qPCR. We found that short interfering RNA (siRNA)-mediated knockdown of C/EBPβ attenuated atherogenic lipid-mediated induction of proteins and genes implicated in inflammation (P-NFkB-p65, NFkB-p65, and TNFα), ER stress (ATF4 and ATF6), and apoptosis (CHOP, caspase 1, 3, and 12). Interestingly, C/EBPβ knockdown upregulated the expression of autophagy proteins (LC3A/B-II, ATG5) and genes (LC3B, ATG5) but decreased the mammalian target of rapamycin (mTOR) protein phosphorylation and mTORC1 gene expression in oxLDL-loaded RAW264.7 macrophage cells. More importantly, treatment with rapamycin (inhibitor of mTOR) increased expression of proteins implicated in autophagy and cholesterol efflux in oxLDL-loaded RAW 264.7 macrophage cells. The present results suggest that C/EBPβ inactivation regulates macrophage foam cell formation in atherogenesis by reducing inflammation, ER stress, and apoptosis and by promoting autophagy and inactivating mTOR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

C/EBPβ:

CCAAT/enhancer-binding protein beta

ERS:

Endoplasmic reticulum stress

ATG5:

Autophagy gene 5

ATF4:

Activating transcription factor 4

ATF6:

Activating transcription factor 6

LC3-I & II:

Microtubule-associated protein 1 light chain 3-I & II

CHOP:

CCAAT/enhancer-binding protein (C/EBP) homologous protein

mTOR:

Mammalian target of rapamycin

mTORC1:

mTOR complex 1

mTORC2:

mTOR complex 2

ox-LDL:

Oxidized low-density lipoproteins

References

  1. Davies LC, Jenkins SJ, Allen JE, Taylor PR (2013) Tissue-resident macrophages. Nat Immunol 14:986–995. https://doi.org/10.1038/ni.2705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lusis AJ (2000) Atherosclerosis. Nature 407:233–241. https://doi.org/10.1038/35025203

    Article  CAS  PubMed  Google Scholar 

  3. Mori M, Itabe H, Higashi Y, Fujimoto Y, Shiomi M, Yoshizumi M, Ouchi Y, Takano T (2001) Foam cell formation containing lipid droplets enriched with free cholesterol by hyperlipidemic serum. J Lipid Res 42:1771–1781

    CAS  PubMed  Google Scholar 

  4. Glass CK, Witztum JL (2001) Atherosclerosis. the road ahead. Cell 104:503–516

    Article  CAS  PubMed  Google Scholar 

  5. Hotamisligil GS (2010) Endoplasmic reticulum stress and atherosclerosis. Nat Med 16:396–399. https://doi.org/10.1038/nm0410-396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Oh J, Riek AE, Weng S, Petty M, Kim D, Colonna M, Cella M, Bernal-Mizrachi C (2012) Endoplasmic reticulum stress controls M2 macrophage differentiation and foam cell formation. J Biol Chem 287:11629–11641. https://doi.org/10.1074/jbc.M111.338673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ross R (1999) Atherosclerosis–an inflammatory disease. N Engl J Med 340:115–126. https://doi.org/10.1056/nejm199901143400207

    Article  CAS  PubMed  Google Scholar 

  8. Bentzon JF, Otsuka F, Virmani R, Falk E (2014) Mechanisms of plaque formation and rupture. Circ Res 114:1852–1866. https://doi.org/10.1161/circresaha.114.302721

    Article  CAS  PubMed  Google Scholar 

  9. Tabas I (2005) Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arterioscler Thromb Vasc Biol 25:2255–2264. https://doi.org/10.1161/01.ATV.0000184783.04864.9f

    Article  CAS  PubMed  Google Scholar 

  10. Seimon T, Tabas I (2009) Mechanisms and consequences of macrophage apoptosis in atherosclerosis. J Lipid Res 50(Suppl):S382–S387. https://doi.org/10.1194/jlr.R800032-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Arai S, Shelton JM, Chen M, Bradley MN, Castrillo A, Bookout AL, Mak PA, Edwards PA, Mangelsdorf DJ, Tontonoz P, Miyazaki T (2005) A role for the apoptosis inhibitory factor AIM/Spalpha/Api6 in atherosclerosis development. Cell Metab 1:201–213. https://doi.org/10.1016/j.cmet.2005.02.002

    Article  CAS  PubMed  Google Scholar 

  12. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42. https://doi.org/10.1016/j.cell.2007.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hewitt G, Korolchuk VI (2017) Repair, reuse, recycle: the expanding role of autophagy in genome maintenance. Trends Cell Biol 27:340–351. https://doi.org/10.1016/j.tcb.2016.11.011

    Article  CAS  PubMed  Google Scholar 

  14. Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132. https://doi.org/10.1146/annurev-cellbio-092910-154005

    Article  CAS  PubMed  Google Scholar 

  15. Gotoh T, Endo M, Oike Y (2011) Endoplasmic reticulum stress-related inflammation and cardiovascular diseases. Int J Inflamm 2011:8

    Article  Google Scholar 

  16. Sheng R, Liu X-Q, Zhang L-S, Gao B, Han R, Wu Y-Q, Zhang X-Y, Qin Z-H (2012) Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning. Autophagy 8:310–325

    Article  CAS  PubMed  Google Scholar 

  17. Saitoh T, Fujita N, Jang MH, Uematsu S, Yang B-G, Satoh T, Omori H, Noda T, Yamamoto N, Komatsu M (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature 456:264

    Article  CAS  PubMed  Google Scholar 

  18. Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469:323–335. https://doi.org/10.1038/nature09782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Anding AL, Baehrecke EH (2015) Autophagy in cell life and cell death. Curr Top Dev Biol 114:67–91. https://doi.org/10.1016/bs.ctdb.2015.07.012

    Article  CAS  PubMed  Google Scholar 

  20. Ouimet M, Franklin V, Mak E, Liao X, Tabas I, Marcel YL (2011) Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab 13:655–667. https://doi.org/10.1016/j.cmet.2011.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Le Guezennec X, Brichkina A, Huang YF, Kostromina E, Han W, Bulavin DV (2012) Wip1-dependent regulation of autophagy, obesity, and atherosclerosis. Cell Metab 16:68–80. https://doi.org/10.1016/j.cmet.2012.06.003

    Article  CAS  PubMed  Google Scholar 

  22. Yao T, Ying X, Zhao Y, Yuan A, He Q, Tong H, Ding S, Liu J, Peng X, Gao E, Pu J, He B (2015) Vitamin D receptor activation protects against myocardial reperfusion injury through inhibition of apoptosis and modulation of autophagy. Antioxid Redox Signal 22:633–650. https://doi.org/10.1089/ars.2014.5887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nussenzweig SC, Verma S, Finkel T (2015) The role of autophagy in vascular biology. Circ Res 116:480–488. https://doi.org/10.1161/circresaha.116.303805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gatica D, Chiong M, Lavandero S, Klionsky DJ (2015) Molecular mechanisms of autophagy in the cardiovascular system. Circ Res 116:456–467. https://doi.org/10.1161/circresaha.114.303788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tang QQ, Otto TC, Lane MD (2003) CCAAT/enhancer-binding protein beta is required for mitotic clonal expansion during adipogenesis. Proc Natl Acad Sci USA 100:850–855. https://doi.org/10.1073/pnas.0337434100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Giltiay NV, Karakashian AA, Alimov AP, Ligthle S, Nikolova-Karakashian MN (2005) Ceramide- and ERK-dependent pathway for the activation of CCAAT/enhancer binding protein by interleukin-1beta in hepatocytes. J Lipid Res 46:2497–2505. https://doi.org/10.1194/jlr.M500337-JLR200

    Article  CAS  PubMed  Google Scholar 

  27. Akira S, Isshiki H, Sugita T, Tanabe O, Kinoshita S, Nishio Y, Nakajima T, Hirano T, Kishimoto T (1990) A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family. EMBO J 9:1897–1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Natsuka S, Akira S, Nishio Y, Hashimoto S, Sugita T, Isshiki H, Kishimoto T (1992) Macrophage differentiation-specific expression of NF-IL6, a transcription factor for interleukin-6. Blood 79:460–466

    Article  CAS  PubMed  Google Scholar 

  29. Akira S, Kishimoto T (1997) NF-IL6 and NF-kappa B in cytokine gene regulation. Adv Immunol 65:1–46

    Article  CAS  PubMed  Google Scholar 

  30. Uematsu S, Kaisho T, Tanaka T, Matsumoto M, Yamakami M, Omori H, Yamamoto M, Yoshimori T, Akira S (2007) The C/EBPβ isoform 34-kDa LAP is responsible for NF-IL-6-mediated gene induction in activated macrophages, but is not essential for intracellular bacteria killing. J Immunol 179:5378–5386

    Article  CAS  PubMed  Google Scholar 

  31. Rahman SM, Janssen RC, Choudhury M, Baquero KC, Aikens RM, de la Houssaye BA, Friedman JE (2012) CCAAT/enhancer-binding protein beta (C/EBPbeta) expression regulates dietary-induced inflammation in macrophages and adipose tissue in mice. J Biol Chem 287:34349–34360. https://doi.org/10.1074/jbc.M112.410613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rahman SM, Baquero KC, Choudhury M, Janssen RC, Becky A, Sun M, Miyazaki-Anzai S, Wang S, Moustaid-Moussa N, Miyazaki M (2016) C/EBPβ in bone marrow is essential for diet induced inflammation, cholesterol balance, and atherosclerosis. Atherosclerosis 250:172–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. (2019) Real-Time PCR, Applications Guide, Bio-Rad

  34. Rahman SM, Choudhury M, Baquero K, Janssen RC, de la Houssaye BA, Miyazaki-anzai S, Miyazaki M, Majka S, Friedman JE (2010) Macrophage-specific deletion of ccaat/enhancer protein beta (c/ebpβ) in Apoe −/− Mice attenuates inflammation, atherosclerosis, and foam cell formation. Circulation 122:A18763

    Article  Google Scholar 

  35. Tsukano H, Gotoh T, Endo M, Miyata K, Tazume H, Kadomatsu T, Yano M, Iwawaki T, Kohno K, Araki K (2010) The endoplasmic reticulum stress-C/EBP homologous protein pathway-mediated apoptosis in macrophages contributes to the instability of atherosclerotic plaques. Arterioscler Thromb Vasc Biol 30:1925–1932

    Article  CAS  PubMed  Google Scholar 

  36. Thorp E, Li G, Seimon TA, Kuriakose G, Ron D, Tabas I (2009) Reduced apoptosis and plaque necrosis in advanced atherosclerotic lesions of Apoe −/− and Ldlr −/− mice lacking CHOP. Cell Metabol 9:474–481

    Article  CAS  Google Scholar 

  37. Ouimet M (2013) Autophagy in obesity and atherosclerosis: interrelationships between cholesterol homeostasis, lipoprotein metabolism and autophagy in macrophages and other systems. Biochim et Biophys Acta (BBA) 1831:1124–1133

    Article  CAS  Google Scholar 

  38. Zhang B-C, Zhang C-W, Wang C, Pan D-F, Xu T-D, Li D-Y (2016) Luteolin attenuates foam cell formation and apoptosis in Ox-LDL-stimulated macrophages by enhancing autophagy. Cell Physiol Biochem 39:2065–2076

    Article  CAS  PubMed  Google Scholar 

  39. Pattingre S, Espert L, Biard-Piechaczyk M, Codogno P (2008) Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie 90:313–323. https://doi.org/10.1016/j.biochi.2007.08.014

    Article  CAS  PubMed  Google Scholar 

  40. Kim J, Kundu M, Viollet B, Guan K-L (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim YC, Guan KL (2015) mTOR: a pharmacologic target for autophagy regulation. J Clin Invest 125:25–32. https://doi.org/10.1172/jci73939

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hutchins PM, Heinecke JW (2015) Cholesterol efflux capacity, macrophage reverse cholesterol transport, and cardioprotective HDL. Curr Opin Lipidol 26:388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV, Orekhov AN (2017) Mechanisms of foam cell formation in atherosclerosis. J Mol Med 95:1153–1165

    Article  CAS  PubMed  Google Scholar 

  44. Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169:425–434. https://doi.org/10.1083/jcb.200412022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J-i, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    Article  CAS  PubMed  Google Scholar 

  46. Sahani MH, Itakura E, Mizushima N (2014) Expression of the autophagy substrate SQSTM1/p62 is restored during prolonged starvation depending on transcriptional upregulation and autophagy-derived amino acids. Autophagy 10:431–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Klionsky DJ, Cregg JM, Dunn WA, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M (2003) A unified nomenclature for yeast autophagy-related genes. Dev Cell 5:539–545

    Article  CAS  PubMed  Google Scholar 

  48. Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7:279–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477

    Article  CAS  PubMed  Google Scholar 

  50. Zhang X, Evans TD, Jeong SJ, Razani B (2018) Classical and alternative roles for autophagy in lipid metabolism. Curr Opin Lipidol 29:203–211. https://doi.org/10.1097/mol.0000000000000509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ouimet M, Ediriweera H, Afonso MS, Ramkhelawon B, Singaravelu R, Liao X, Bandler RC, Rahman K, Fisher EA, Rayner KJ, Pezacki JP, Tabas I, Moore KJ (2017) microRNA-33 regulates macrophage autophagy in atherosclerosis. Arterioscler Thromb Vasc Biol 37:1058–1067. https://doi.org/10.1161/atvbaha.116.308916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Qiao L, Zhang X, Liu M, Liu X, Dong M, Cheng J, Zhang X, Zhai C, Song Y, Lu H (2017) Ginsenoside Rb1 enhances atherosclerotic plaque stability by improving autophagy and lipid metabolism in macrophage foam cells. Front Pharmacol 8:727

    Article  Google Scholar 

  53. Scull CM, Tabas I (2011) Mechanisms of ER stress-induced apoptosis in atherosclerosis. Arterioscler Thromb Vasc Biol 31:2792–2797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kavurma MM, Rayner KJ, Karunakaran D (2017) The walking dead: macrophage inflammation and death in atherosclerosis. Curr Opin Lipidol 28:91–98. https://doi.org/10.1097/mol.0000000000000394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li Y, Schwabe RF, DeVries-Seimon T, Yao PM, Gerbod-Giannone M-C, Tall AR, Davis RJ, Flavell R, Brenner DA, Tabas I (2005) Free cholesterol-loaded macrophages are an abundant source of tumor necrosis factor-α and interleukin-6 model of NF-κB-and map kinase-dependent inflammation in advanced atherosclerosis. J Biol Chem 280:21763–21772

    Article  CAS  PubMed  Google Scholar 

  56. Hoseini Z, Sepahvand F, Rashidi B, Sahebkar A, Masoudifar A, Mirzaei H (2018) NLRP3 inflammasome: its regulation and involvement in atherosclerosis. J Cell Physiol 233:2116–2132. https://doi.org/10.1002/jcp.25930

    Article  CAS  PubMed  Google Scholar 

  57. Tabas I (2010) The role of endoplasmic reticulum stress in the progression of atherosclerosis. Circ Res 107:839–850. https://doi.org/10.1161/circresaha.110.224766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tse G, Yan BP, Chan YW, Tian XY, Huang Y (2016) Reactive oxygen species, endoplasmic reticulum stress and mitochondrial dysfunction: the link with cardiac arrhythmogenesis. Front Physiol 7:313

    PubMed  PubMed Central  Google Scholar 

  59. Sun Y, Zhang D, Liu X, Li X, Liu F, Yu Y, Jia S, Zhou Y, Zhao Y (2018) Endoplasmic reticulum stress affects lipid metabolism in atherosclerosis via CHOP activation and over-expression of miR-33. Cell Physiol Biochem 48:1995–2010

    Article  CAS  PubMed  Google Scholar 

  60. Razani B, Feng C, Coleman T, Emanuel R, Wen H, Hwang S, Ting JP, Virgin HW, Kastan MB, Semenkovich CF (2012) Autophagy links inflammasomes to atherosclerotic progression. Cell Metab 15:534–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Leng S, Iwanowycz S, Saaoud F, Wang J, Wang Y, Sergin I, Razani B, Fan D (2016) Ursolic acid enhances macrophage autophagy and attenuates atherogenesis. J Lipid Res 57:1006–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shimobayashi M, Hall MN (2014) Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol 15:155–162

    Article  CAS  PubMed  Google Scholar 

  63. Laplante M, Sabatini DM (2013) Regulation of mTORC1 and its impact on gene expression at a glance. The Company of Biologists Ltd, Cambridge

    Book  Google Scholar 

  64. Buss SJ, Muenz S, Riffel JH, Malekar P, Hagenmueller M, Weiss CS, Bea F, Bekeredjian R, Schinke-Braun M, Izumo S (2009) Beneficial effects of Mammalian target of rapamycin inhibition on left ventricular remodeling after myocardial infarction. J Am Coll Cardiol 54:2435–2446

    Article  CAS  PubMed  Google Scholar 

  65. Sciarretta S, Zhai P, Shao D, Maejima Y, Robbins J, Volpe M, Condorelli G, Sadoshima J (2012) Rheb is a critical regulator of autophagy during myocardial ischemia: pathophysiological implications in obesity and metabolic syndrome. Circulation 125(9):1134–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Settembre C, Di Malta C, Polito VA, Arencibia MG, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P (2011) TFEB links autophagy to lysosomal biogenesis. Science 332:1429–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, Erdin S, Huynh T, Ferron M, Karsenty G, Vellard MC (2012) A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J 31:1095–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Emanuel R, Sergin I, Bhattacharya S, Turner J, Epelman S, Settembre C, Diwan A, Ballabio A, Razani B (2014) Induction of lysosomal biogenesis in atherosclerotic macrophages can rescue lipid-induced lysosomal dysfunction and downstream sequelae. Arterioscler Thromb Vasc Biol 114:303342

    Google Scholar 

Download references

Acknowledgements

This research was funded by the American Heart Association (AHA) Beginning Grant In Aid and the Startup Fund (Texas Tech University), USA to SMR.

Author information

Authors and Affiliations

Authors

Contributions

SMR designed and supervised the research. MKZ, MR, and CP performed the experiments. MKZ, CP, and SMR analyzed the data. MKZ and SMR wrote the manuscript. MC, NMM, MR and SMR revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shaikh M. Rahman.

Ethics declarations

Conflict of interest

All the authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 83 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahid, M.K., Rogowski, M., Ponce, C. et al. CCAAT/enhancer-binding protein beta (C/EBPβ) knockdown reduces inflammation, ER stress, and apoptosis, and promotes autophagy in oxLDL-treated RAW264.7 macrophage cells. Mol Cell Biochem 463, 211–223 (2020). https://doi.org/10.1007/s11010-019-03642-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-019-03642-4

Keywords

Navigation