Skip to main content

Advertisement

Log in

Salivary extracellular vesicles can modulate purinergic signalling in oral tissues by combined ectonucleoside triphosphate diphosphohydrolases and ecto-5′-nucleotidase activities

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We reported previously that the rat submandibular gland is able to release nanovesicles capable to hydrolyse millimolar concentrations of ATP, ADP and AMP in vitro. Here, we show that rat saliva also contains nanovesicles with the ability to hydrolyse ATP. Our aim was to identify and characterize vesicular nucleotidases by using kinetic, immunological and in silico approaches. Nucleotidase activity in the absence or presence of specific inhibitors allowed us to assume the participation of NTPDase1, -2 and -3, together with ecto-5′-nucleotidase, confirmed using specific antibodies. At neutral pH, initial ATPase activity would be mostly due to NTPDase2, which was thereafter inactivated, leaving NTPDase1 and NTPDase3 to hydrolyse ATP and ADP with an efficacy ATPase/ADPase around 2. Ecto-5′nucleotidase would be mainly responsible for AMP hydrolysis and adenosine accumulation. We proposed a kinetic model for NTPDase2 as a tool to isolate and analyse the turnover of this enzyme in the presence of different ATP concentrations, including those expected in extracellular media. Our study characterizes the ectonucleotidases carried by extracellular vesicles which contribute to modulate ATP and adenosine concentrations in the oral cavity, essential players in purinergic signalling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Han Y, Jia L, Zheng Y, Li W (2018) Salivary exosomes: emerging roles in systemic disease. Int J Biol Sci 14(6):633–643

    CAS  PubMed  PubMed Central  Google Scholar 

  2. González D, Egido P, Balcarcel N, Hattab C, Barbieri van Haaster M, Pelletier J, Sévigny J, Ostuni M (2015) Rat submandibular glands secrete nanovesicles with NTPDase and 5′-nucleotidase activities. Purinergic Signal 11(1):107–116

    PubMed  Google Scholar 

  3. González D, Barbieri van Haaster M, Quinteros Villarruel E, Brandt M, Benítez M, Stranieri G, Orman B (2018) Histamine stimulates secretion of extracellular vesicles with nucleotidase activity in rat submandibular gland. Arch Oral Biol 85:201–206

    PubMed  Google Scholar 

  4. Burnstock G, Knight G (2004) Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol 240:31–304

    CAS  PubMed  Google Scholar 

  5. Lee M, Zeng W, Muallem S (1997) Characterization and localization of P2 receptors in rat submandibular gland acinar and duct cells. J Biol Chem 272(52):32951–32955

    CAS  PubMed  Google Scholar 

  6. Turner J, Landon L, Gibbons S, Talamo B (1999) Salivary gland P2 nucleotide receptors. Crit Rev Oral Biol Med 10(2):210–224

    CAS  PubMed  Google Scholar 

  7. Fontanils U et al (1800) Stimulation by P2X(7) receptors of calcium-dependent production of reactive oxygen species (ROS) in rat submandibular glands. Biochim Biophys Acta 11:1183–1191

    Google Scholar 

  8. Nakamoto T, Brown D, Catalan M, Gonzalez-Begne M, Romanenko V, Melvin J (2009) Purinergic P2X7 receptors mediate ATP-induced saliva secretion by the mouse submandibular gland. J Biol Chem 284:4815–4822

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Woods L, Camden J, Batek J, Petris M, Erb L, Weisman G (2012) P2X7 receptor activation induces inflammatory responses in salivary gland epithelium. Am J Physiol Cell Physiol 303:790–801

    Google Scholar 

  10. Gallez F, Fadel M, Scruel O, Cantraine F, Courtois P (2000) Salivary biomass assessed by bioluminescence ATP assay related to (bacterial and somatic) cell counts. Cell Biochem Funct 18(2):103–108

    CAS  PubMed  Google Scholar 

  11. Lim JC, Mitchell CH (2012) Inflammation, pain, and pressure–purinergic signaling in oral tissues. J Dent Res 91(12):1103–1109

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Cekic C, Linden J (2016) Purinergic regulation of the immune system. Nat Rev Immunol 16(3):177–192

    CAS  PubMed  Google Scholar 

  13. Kukulski F et al (2005) Comparative hydrolysis of P2 receptor agonists by NTPDases 1, 2, 3 and 8. Purinergic Signal 1(2):193–204

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zimmermann H, Zebisch M, Sträter N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8(3):437–502

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Yegutkin G (2014) Enzymes involved in metabolism of extracellular nucleotides and nucleosides: functional implications and measurement of activities. Crit Rev Biochem Mol Biol 49(6):473–497

    CAS  PubMed  Google Scholar 

  16. Knowles A (2011) The GDA1_CD39 superfamily: NTPDases with diverse functions. Purinergic Signal 7(1):21–45

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Baginski E, Foà P, Zak B (1967) Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. Clin Chem 13(4):326–332

    CAS  PubMed  Google Scholar 

  18. Théry C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 3(3):22

    PubMed  Google Scholar 

  19. Hecht JP, Nikonov JM, Alonso GL (1990) A BASIC program for the numerical solution of the transient kinetics of complex biochemical models. Comput Methods Programs Biomed 33(1):13–20

    CAS  PubMed  Google Scholar 

  20. Kozlenkov A, Le Du MH, Cuniasse P, Ny T, Hoylaerts MF, Millán JL (2004) Residues determining the binding specificity of uncompetitive inhibitors to tissue-nonspecific alkaline phosphatase. J Bone Miner Res 19(11):1862–1872

    CAS  PubMed  Google Scholar 

  21. Iqbal J, Vollmayer P, Braun N, Zimmermann H, Müller C (2005) A capillary electrophoresis method for the characterization of ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) and the analysis of inhibitors by in-capillary enzymatic microreaction. Purinergic Signal 1(4):349–358

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Iqbal J, Lévesque S, Sévigny J, Müller C (2008) A highly sensitive CE-UV method with dynamic coating of silica-fused capillaries for monitoring of nucleotide pyrophosphatase/phosphodiesterase reactions. Electrophoresis 29(17):3685–3693

    CAS  PubMed  Google Scholar 

  23. Joseph S, Pifer M, Przybylski R, Dubyak G (2004) Methylene ATP analogs as modulators of extracellular ATP metabolism and accumulation. Br J Pharmacol 142(6):1002–1014

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Araujo C, Quintero I, Kipar A, Herrala A, Pulkka A, Saarinen L, Sampsa H, Vihko P (2014) Prostatic acid phosphatase is the main acid phosphatase with 5′-ectonucleotidase activity in the male mouse saliva and regulates salivation. Am J Physiol Cell Physiol 306(11):1017–1027

    Google Scholar 

  25. Panula P, Chazot P, Cowart M, Gutzmer R, Leurs R, Liu W, Haas H (2015) International union of basic and clinical pharmacology. XCVIII. Histamine receptors. Pharmacol Rev 67(3):601–655

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kittel A et al (2004) Localization of nucleoside triphosphate diphosphohydrolase-1 (NTPDase1) and NTPDase2 in pancreas and salivary gland. J Histochem Cytochem 52(7):861–871

    CAS  PubMed  Google Scholar 

  27. Lavoie E, Gulbransen B, Martín-Satué M, Aliagas E, Sharkey K, Sévigny J (2011) Ectonucleotidases in the digestive system: focus on NTPDase3 localization. Am J Physiol Gastrointest Liver Physiol 300(4):608–620

    Google Scholar 

  28. Ishibashi K, Kamura K, Yamazaki J (2007) Involvement of apical P2Y2 receptor-regulated CFTR activity in muscarinic stimulation of Cl(−) reabsorption in rat submandibular gland. Am J Physiol Regul Integr Comp Physiol 294(5):1729–1736

    Google Scholar 

  29. Henz S, Ribeiro C, Rosa A, Chiarelli R, Casali E, Sarkis J (2006) Kinetic characterization of ATP diphosphohydrolase and 5′-nucleotidase activities in cells cultured from submandibular salivary glands of rats. Cell Biol Int 30(3):214–220

    CAS  PubMed  Google Scholar 

  30. Henz S, Fürstenau C, Chiarelli R, Sarkis J (2007) Kinetic and biochemical characterization of an ecto-nucleotide pyrophosphatase/phosphodiesterase (EC 3.1.4.1) in cells cultured from submandibular salivary glands of rats. Arch Oral Biol 52(10):916–923

    CAS  PubMed  Google Scholar 

  31. Beeler T, Wang T, Gable K, Lee S (1985) Comparison of the rat microsomal Mg-ATPase of various tissues. Arch Biochem Biophys 243(2):644–654

    CAS  PubMed  Google Scholar 

  32. Knowles A, Chiang W (2003) Enzymatic and transcriptional regulation of human ecto-ATPase/E-NTPDase 2. Arch Biochem Biophys 418(2):217–227

    CAS  PubMed  Google Scholar 

  33. Martín-Romero F, García-Martín E, Gutiérrez-Merino C (1996) Inactivation of ecto-ATPase activity of rat brain synaptosomes. Biochim Biophys Acta 1283(1):51–59

    PubMed  Google Scholar 

  34. Vlajkovi S, Wang C, Soeller C, Zimmermann H, Thorne P, Housley G (2007) Activation-dependent trafficking of NTPDase2 in Chinese hamster ovary cells. Int J Biochem Cell Biol 39(4):810–817

    Google Scholar 

  35. Jiang Z, Wu Y, Csizmadia E, Feldbrügge L, Enjyoji K, Tigges J, Robson S (2014) Characterization of circulating microparticle-associated CD39 family ecto-nucleotidases in human plasma. Purinergic Signal 10(4):611–618

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Clayton A, Al-Taei S, Webber J, Mason M, Tabi Z (2011) Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. J Immunol 187(2):676–683

    CAS  PubMed  Google Scholar 

  37. Salimu J, Webber J, Gurney M, Al-Taei S, Clayton A, Tabi Z (2017) Dominant immunosuppression of dendritic cell function by prostate-cancer-derived exosomes. J Extracell Vesicles 6(1):1368823

    PubMed  PubMed Central  Google Scholar 

  38. Fan W, Wang W, Wu J, Ma L, Guo J (2017) Identification of CD4+ T-cell-derived CD161+ CD39+ and CD39+ CD73+ microparticles as new biomarkers for rheumatoid arthritis. Biomark Med 11(2):107–116

    CAS  PubMed  Google Scholar 

  39. Ceruti S, Colombo L, Magni G, Viganò F, Boccazzi M, Deli M, Kittel A (2011) Oxygen-glucose deprivation increases the enzymatic activity and the microvesicle-mediated release of ectonucleotidases in the cells composing the blood–brain barrier. Neurochem Int 59(2):259–271

    CAS  PubMed  Google Scholar 

  40. Binderman I, Gadban N, Yaffe A (2017) Extracellular ATP is a key modulator of alveolar bone loss in periodontitis. Arch Oral Biol 81:131–135

    CAS  PubMed  Google Scholar 

  41. Armstrong FB (1989) Biochemistry, 3rd edn. Oxford University Press, New York

    Google Scholar 

  42. Kukulski F, Komoszyński M (2003) Purification and characterization of NTPDase1 (ecto-apyrase) and NTPDase2 (ecto-ATPase) from porcine brain cortex synaptosomes, (in eng). Eur J Biochem 270(16):3447–3454

    CAS  PubMed  Google Scholar 

  43. Teruel JA, Kurzmack M, Inesi G (1987) Kinetic and thermodynamic control of ATP synthesis by sarcoplasmic reticulum adenosinetriphosphatase. J Biol Chem 262(27):13055–13060

    CAS  PubMed  Google Scholar 

  44. Grubmeyer C, Cross RL, Penefsky HS (1982) Mechanism of ATP hydrolysis by beef heart mitochondrial ATPase. Rate constants for elementary steps in catalysis at a single site. J Biol Chem 257(20):12092–12100

    CAS  PubMed  Google Scholar 

  45. Stout JG, Kirley TL (1994) Purification and characterization of the ecto-Mg-ATPase of chicken gizzard smooth muscle. J Biochem Biophys Methods 29(1):61–75

    CAS  PubMed  Google Scholar 

  46. Treuheit MJ, Vaghy PL, Kirley TL (1992) Mg(2+)-ATPase from rabbit skeletal muscle transverse tubules is 67-kilodalton glycoprotein. J Biol Chem 267(17):11777–11782

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Universidad de Buenos Aires (UBACYT Grants 2002015020012BA and 20720150100006BA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Débora A. González.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, D.A., Barbieri van Haaster, M.M., Quinteros Villarruel, E. et al. Salivary extracellular vesicles can modulate purinergic signalling in oral tissues by combined ectonucleoside triphosphate diphosphohydrolases and ecto-5′-nucleotidase activities. Mol Cell Biochem 463, 1–11 (2020). https://doi.org/10.1007/s11010-019-03624-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-019-03624-6

Keywords

Navigation