Bucuvic EM, Ponce D, Balbi AL (2011) Risk factors for mortality in acute kidney injury. Rev Assoc Med Bras (1992) 57:158–163
Article
Google Scholar
Hsu CY, McCulloch CE, Fan D, Ordonez JD, Chertow GM, Go AS (2007) Community-based incidence of acute renal failure. Kidney Int 72:208–212. https://doi.org/10.1038/sj.ki.5002297
Article
PubMed
PubMed Central
Google Scholar
Ozer Sehirli A, Sener G, Ercan F (2009) Protective effects of pycnogenol against ischemia reperfusion-induced oxidative renal injury in rats. Ren Fail 31:690–697. https://doi.org/10.3109/08860220903085971
CAS
Article
PubMed
Google Scholar
Eraslan E, Tanyeli A, Polat E (2019) 8-Br-cADPR, a TRPM2 ion channel antagonist, inhibits renal ischemia-reperfusion injury. J Cell Physiol 234:4572–4581. https://doi.org/10.1002/jcp.27236
CAS
Article
PubMed
Google Scholar
Cakir M, Tekin S, Taslidere A, Cakan P, Duzova H, Gul CC (2018) Protective effect of N-(p-amylcinnamoyl) anthranilic acid, phospholipase A2 enzyme inhibitor, and transient receptor potential melastatin-2 channel blocker against renal ischemia-reperfusion injury. J Cell Biochem. https://doi.org/10.1002/jcb.27664
Article
PubMed
Google Scholar
Lawrence T (2009) The nuclear factor NF-kappa B pathway in inflammation. Cold Spring Harb Persp Biol 1:a001651. https://doi.org/10.1101/cshperspect.a001651
CAS
Article
Google Scholar
Moynagh PN (2005) The NF-kappaB pathway. J Cell Sci 118:4589–4592. https://doi.org/10.1242/jcs.02579
CAS
Article
PubMed
Google Scholar
Beker BM, Corleto MG, Fieiras C, Musso CG (2018) Novel acute kidney injury biomarkers: their characteristics, utility and concerns. Int Urol Nephrol 50:705–713. https://doi.org/10.1007/s11255-017-1781-x
CAS
Article
PubMed
Google Scholar
Kokkoris S, Pipili C, Grapsa E, Kyprianou T, Nanas S (2013) Novel biomarkers of acute kidney injury in the general adult ICU: a review. Ren Fail 35:579–591. https://doi.org/10.3109/0886022x.2013.773835
Article
PubMed
Google Scholar
Teo SH, Endre ZH (2017) Biomarkers in acute kidney injury (AKI). Best Pract Res Clin Anaesthesiol 31:331–344. https://doi.org/10.1016/j.bpa.2017.10.003
Article
PubMed
Google Scholar
Picone RP, Kendall DA (2015) Minireview: from the bench, toward the clinic: therapeutic opportunities for cannabinoid receptor modulation. Mol Endocrinol 29:801–813. https://doi.org/10.1210/me.2015-1062
CAS
Article
PubMed
PubMed Central
Google Scholar
Barutta F, Piscitelli F, Pinach S, Bruno G, Gambino R, Rastaldi MP, Salvidio G, Di Marzo V, Cavallo Perin P, Gruden G (2011) Protective role of cannabinoid receptor type 2 in a mouse model of diabetic nephropathy. Diabetes 60:2386–2396. https://doi.org/10.2337/db10-1809
CAS
Article
PubMed
PubMed Central
Google Scholar
Deutsch DG, Goligorsky MS, Schmid PC, Krebsbach RJ, Schmid HHO, Das SK, Dey SK, Arreaza G, Thorup C, Stefano G, Moore LC (1997) Production and physiological actions of anandamide in the vasculature of the rat kidney. J Clin Investig 100:1538–1546. https://doi.org/10.1172/Jci119677
CAS
Article
PubMed
Google Scholar
Jenkin KA, McAinch AJ, Briffa JF, Zhang Y, Kelly DJ, Pollock CA, Poronnik P, Hryciw DH (2013) Cannabinoid receptor 2 expression in human proximal tubule cells is regulated by albumin independent of ERK1/2 signaling. Cell Physiol Biochem 32:1309–1319. https://doi.org/10.1159/000354529
CAS
Article
PubMed
Google Scholar
Jenkin KA, McAinch AJ, Grinfeld E, Hryciw DH (2010) Role for cannabinoid receptors in human proximal tubular hypertrophy. Cell Physiol Biochem 26:879–886. https://doi.org/10.1159/000323997
CAS
Article
PubMed
Google Scholar
Moradi H, Oveisi F, Khanifar E, Moreno-Sanz G, Vaziri ND, Piomelli D (2016) Increased renal 2-arachidonoylglycerol level is associated with improved renal function in a mouse model of acute kidney injury. Cannabis Cannabinoid Res 1:218–228. https://doi.org/10.1089/can.2016.0013
CAS
Article
PubMed
PubMed Central
Google Scholar
Pressly JD, Mustafa SM, Adibi AH, Alghamdi S, Pandey P, Roy KK, Doerksen RJ, Moore BM Jr, Park F (2018) Selective cannabinoid 2 receptor stimulation reduces tubular epithelial cell damage after renal ischemia-reperfusion injury. J Pharmacol Exp Ther 364:287–299. https://doi.org/10.1124/jpet.117.245522
CAS
Article
PubMed
PubMed Central
Google Scholar
Mukhopadhyay P, Rajesh M, Pan H, Patel V, Mukhopadhyay B, Batkai S, Gao B, Hasko G, Pacher P (2010) Cannabinoid-2 receptor limits inflammation, oxidative/nitrosative stress, and cell death in nephropathy. Free Radic Biol Med 48:457–467. https://doi.org/10.1016/j.freeradbiomed.2009.11.022
CAS
Article
PubMed
Google Scholar
Zoja C, Locatelli M, Corna D, Villa S, Rottoli D, Nava V, Verde R, Piscitelli F, Di Marzo V, Fingerle J, Adam JM, Rothenhaeusler B, Ottaviani G, Benardeau A, Abbate M, Remuzzi G, Benigni A (2016) Therapy with a selective cannabinoid receptor type 2 agonist limits albuminuria and renal injury in mice with type 2 diabetic nephropathy. Nephron 132:59–69. https://doi.org/10.1159/000442679
CAS
Article
PubMed
Google Scholar
Jenkin KA, O’Keefe L, Simcocks AC, Briffa JF, Mathai ML, McAinch AJ, Hryciw DH (2016) Renal effects of chronic pharmacological manipulation of CB2 receptors in rats with diet-induced obesity. Br J Pharmacol 173:1128–1142. https://doi.org/10.1111/bph.13056
CAS
Article
PubMed
Google Scholar
Pertwee RG (1999) Pharmacology of cannabinoid receptor ligands. Curr Med Chem 6:635–664
CAS
PubMed
Google Scholar
Batkai S, Osei-Hyiaman D, Pan H, El-Assal O, Rajesh M, Mukhopadhyay P, Hong F, Harvey-White J, Jafri A, Hasko G, Huffman JW, Gao B, Kunos G, Pacher P (2007) Cannabinoid-2 receptor mediates protection against hepatic ischemia/reperfusion injury. FASEB J 21:1788–1800. https://doi.org/10.1096/fj.06-7451com
CAS
Article
PubMed
PubMed Central
Google Scholar
Feizi A, Jafari MR, Hamedivafa F, Tabrizian P, Djahanguiri B (2008) The preventive effect of cannabinoids on reperfusion-induced ischemia of mouse kidney. Exp Toxicol Pathol 60:405–410. https://doi.org/10.1016/j.etp.2008.04.006
CAS
Article
PubMed
Google Scholar
Li Q, Wang F, Zhang YM, Zhou JJ, Zhang Y (2013) Activation of cannabinoid type 2 receptor by JWH133 protects heart against ischemia/reperfusion-induced apoptosis. Cell Physiol Biochem 31:693–702. https://doi.org/10.1159/000350088
CAS
Article
PubMed
Google Scholar
Montecucco F, Lenglet S, Braunersreuther V, Burger F, Pelli G, Bertolotto M, Mach F, Steffens S (2009) CB(2) cannabinoid receptor activation is cardioprotective in a mouse model of ischemia/reperfusion. J Mol Cell Cardiol 46:612–620. https://doi.org/10.1016/j.yjmcc.2008.12.014
CAS
Article
PubMed
Google Scholar
Cakir M, Tekin S, Doganyigit Z, Erden Y, Soyturk M, Cigremis Y, Sandal S (2019) Cannabinoid type 2 receptor agonist JWH-133, attenuates Okadaic acid induced spatial memory impairment and neurodegeneration in rats. Life Sci 217:25–33. https://doi.org/10.1016/j.lfs.2018.11.058
CAS
Article
PubMed
Google Scholar
Cakir M, Polat A, Tekin S, Vardi N, Taslidere E, Rumeysa Duran Z, Tanbek K (2015) The effect of dexmedetomidine against oxidative and tubular damage induced by renal ischemia reperfusion in rats. Ren Fail 37:704–708. https://doi.org/10.3109/0886022X.2015.1011550
CAS
Article
PubMed
Google Scholar
Paller MS, Hoidal JR, Ferris TF (1984) Oxygen free radicals in ischemic acute renal failure in the rat. J Clin Invest 74:1156–1164. https://doi.org/10.1172/JCI111524
CAS
Article
PubMed
PubMed Central
Google Scholar
Cakir M, Duzova H, Taslidere A, Orhan G, Ozyalin F (2017) Protective effects of salusin-alpha and salusin-beta on renal ischemia/reperfusion damage and their levels in ischemic acute renal failure. Biotechnol Histochem 92:122–133. https://doi.org/10.1080/10520295.2017.1283056
CAS
Article
Google Scholar
Malek M, Nematbakhsh M (2015) Renal ischemia/reperfusion injury; from pathophysiology to treatment. J Ren Inj Prev 4:20–27. https://doi.org/10.12861/jrip.2015.06
CAS
Article
PubMed
Google Scholar
Akcay A, Nguyen Q, Edelstein CL (2009) Mediators of inflammation in acute kidney injury. Mediat Inflamm 2009:137072. https://doi.org/10.1155/2009/137072
CAS
Article
Google Scholar
Guijarro C, Egido J (2001) Transcription factor-kappa B (NF-kappa B) and renal disease. Kidney Int 59:415–424. https://doi.org/10.1046/j.1523-1755.2001.059002415.x
CAS
Article
PubMed
Google Scholar
Zheng Z, Zhao H, Steinberg GK, Yenari MA (2003) Cellular and molecular events underlying ischemia-induced neuronal apoptosis. Drug News Perspect 16:497–503
CAS
Article
Google Scholar
Ghosh S, Hayden MS (2012) Celebrating 25 years of NF-kappaB research. Immunol Rev 246:5–13. https://doi.org/10.1111/j.1600-065X.2012.01111.x
CAS
Article
PubMed
PubMed Central
Google Scholar
Marko L, Vigolo E, Hinze C, Park JK, Roel G, Balogh A, Choi M, Wubken A, Cording J, Blasig IE, Luft FC, Scheidereit C, Schmidt-Ott KM, Schmidt-Ullrich R, Muller DN (2016) Tubular epithelial NF-kappaB activity regulates ischemic AKI. J Am Soc Nephrol 27:2658–2669. https://doi.org/10.1681/asn.2015070748
CAS
Article
PubMed
PubMed Central
Google Scholar
Lameire NH, Vanholder R (2004) Pathophysiology of ischaemic acute renal failure. Best Pract Res Clin Anaesthesiol 18:21–36
CAS
Article
Google Scholar
Wang K, Xie S, Xiao K, Yan P, He W, Xie L (2018) Biomarkers of sepsis-induced acute kidney injury. Biomed Res Int 2018:6937947. https://doi.org/10.1155/2018/6937947
CAS
Article
PubMed
PubMed Central
Google Scholar
Haase M, Bellomo R, Devarajan P, Schlattmann P, Haase-Fielitz A (2009) Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis 54:1012–1024. https://doi.org/10.1053/j.ajkd.2009.07.020
CAS
Article
PubMed
Google Scholar
Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, Cate RL, Sanicola M (1998) Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem 273:4135–4142
CAS
Article
Google Scholar
Ritter JK, Li G, Xia M, Boini K (2016) Anandamide and its metabolites: what are their roles in the kidney? Front Biosci (Schol Ed) 8:264–277
Article
Google Scholar
Park F, Potukuchi PK, Moradi H, Kovesdy CP (2017) Cannabinoids and the kidney: effects in health and disease. Am J Physiol Ren Physiol 313:F1124–F1132. https://doi.org/10.1152/ajprenal.00290.2017
CAS
Article
Google Scholar
Barutta F, Bruno G, Mastrocola R, Bellini S, Gruden G (2018) The role of cannabinoid signaling in acute and chronic kidney diseases. Kidney Int 94:252–258. https://doi.org/10.1016/j.kint.2018.01.024
CAS
Article
PubMed
Google Scholar
Lim JC, Lim SK, Han HJ, Park SH (2010) Cannabinoid receptor 1 mediates palmitic acid-induced apoptosis via endoplasmic reticulum stress in human renal proximal tubular cells. J Cell Physiol 225:654–663. https://doi.org/10.1002/jcp.22255
CAS
Article
PubMed
Google Scholar
Mukhopadhyay P, Pan H, Rajesh M, Batkai S, Patel V, Harvey-White J, Mukhopadhyay B, Hasko G, Gao B, Mackie K, Pacher P (2010) CB1 cannabinoid receptors promote oxidative/nitrosative stress, inflammation and cell death in a murine nephropathy model. Br J Pharmacol 160:657–668. https://doi.org/10.1111/j.1476-5381.2010.00769.x
CAS
Article
PubMed
PubMed Central
Google Scholar
Mukhopadhyay P, Baggelaar M, Erdelyi K, Cao Z, Cinar R, Fezza F, Ignatowska-Janlowska B, Wilkerson J, van Gils N, Hansen T, Ruben M, Soethoudt M, Heitman L, Kunos G, Maccarrone M, Lichtman A, Pacher P, Van der Stelt M (2016) The novel, orally available and peripherally restricted selective cannabinoid CB2 receptor agonist LEI-101 prevents cisplatin-induced nephrotoxicity. Br J Pharmacol 173:446–458. https://doi.org/10.1111/bph.13338
CAS
Article
PubMed
PubMed Central
Google Scholar
Hu L, Yang C, Zhao T, Xu M, Tang Q, Yang B, Rong R, Zhu T (2012) Erythropoietin ameliorates renal ischemia and reperfusion injury via inhibiting tubulointerstitial inflammation. J Surg Res 176:260–266. https://doi.org/10.1016/j.jss.2011.06.035
CAS
Article
PubMed
Google Scholar
Kucuk A, Kabadere S, Tosun M, Koken T, Kinaci MK, Isikli B, Erkasap N (2009) Protective effects of doxycycline in ischemia/reperfusion injury on kidney. J Physiol Biochem 65:183–191
CAS
Article
Google Scholar
Tadagavadi RK, Wang W, Ramesh G (2010) Netrin-1 regulates Th1/Th2/Th17 cytokine production and inflammation through UNC5B receptor and protects kidney against ischemia-reperfusion injury. J Immunol 185:3750–3758. https://doi.org/10.4049/jimmunol.1000435
CAS
Article
PubMed
Google Scholar
Simmons EM, Himmelfarb J, Sezer MT, Chertow GM, Mehta RL, Paganini EP, Soroko S, Freedman S, Becker K, Spratt D, Shyr Y, Ikizler TA (2004) Plasma cytokine levels predict mortality in patients with acute renal failure. Kidney Int 65:1357–1365. https://doi.org/10.1111/j.1523-1755.2004.00512.x
CAS
Article
PubMed
Google Scholar
Murikinati S, Juttler E, Keinert T, Ridder DA, Muhammad S, Waibler Z, Ledent C, Zimmer A, Kalinke U, Schwaninger M (2010) Activation of cannabinoid 2 receptors protects against cerebral ischemia by inhibiting neutrophil recruitment. FASEB J 24:788–798. https://doi.org/10.1096/fj.09-141275
CAS
Article
PubMed
Google Scholar
Zarruk JG, Fernandez-Lopez D, Garcia-Yebenes I, Garcia-Gutierrez MS, Vivancos J, Nombela F, Torres M, Burguete MC, Manzanares J, Lizasoain I, Moro MA (2012) Cannabinoid type 2 receptor activation downregulates stroke-induced classic and alternative brain macrophage/microglial activation concomitant to neuroprotection. Stroke 43:211–219. https://doi.org/10.1161/strokeaha.111.631044
CAS
Article
PubMed
Google Scholar