Effects of different dietary regimes alone or in combination with standardized Aronia melanocarpa extract supplementation on lipid and fatty acids profiles in rats


This study investigated different dietary strategies, high-fat (HFd), or standard diet (Sd) alone or in combination with standardized Aronia melanocarpa extract (SAE), as a polyphenol-rich diet, and their effects on lipids and fatty acids (FA) in rats with metabolic syndrome (MetS). Wistar albino rats were randomly divided into two groups: healthy and rats with MetS, and then depending on dietary patterns on six groups: healthy rats fed with Sd, healthy rats fed with Sd and SAE, rats with MetS fed with HFd, rats with MetS fed with HFd and SAE, rats with MetS fed with Sd, and rats with MetS fed with Sd and SAE. 4 weeks later, after an overnight fast (12–14 h), blood for determination of total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), index of lipid peroxidation (measured as TBARS), and FA was collected. Increased FA and lipid concentration found in MetS rats were reduced when changing dietary habits from HFd to Sd with or without SAE consumption. Consumption of SAE slightly affects the FA profiles, mostly palmitoleic acid in healthy rats and PUFA in MetS + HFd rats. Nevertheless, in a high-fat diet, SAE supplementation significantly decreases n-6/n-3 ratio, thereby decreasing systemic inflammation. Further researches are warranted to confirm these effects in humans.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Kaur JA (2014) Comprehensive review on metabolic syndrome. Cardiol Res Prac. https://doi.org/10.1155/2014/943162

    Article  Google Scholar 

  2. 2.

    Grundy SM (2016) Metabolic syndrome update. Trends Cardiovasc Med 26:364–373

    PubMed  Google Scholar 

  3. 3.

    Nestel P (2003) Metabolic syndrome: multiple candidate genes, multiple environmental factors—multiple syndromes? Int J Clin Pract 134:3–9

    CAS  Google Scholar 

  4. 4.

    Brown L, Poudyal H, Panchal SK (2015) Functional foods as potential therapeutic options for metabolic syndrome. Obes Rev 16:914–941

    CAS  PubMed  Google Scholar 

  5. 5.

    Martinez-Gonzalez MA, Salas-Salvado J, Estruch R et al (2015) Benefits of the Mediterranean diet: insights from the PREDIMED study. Prog Cardiovasc Dis 58:50–60

    PubMed  Google Scholar 

  6. 6.

    Rangel-Huerta OD, Pastor-Villaescusa B, Aguilera CM, Gil A (2015) A systematic review of the efficacy of bioactive compounds in cardiovascular disease: phenolic compounds. Nutrients 7:5177–5216

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Borowska S, Brzoska MM (2016) Chokeberries (Aronia melanocarpa) and their products as a possible means for the prevention and treatment of noncommunicable diseases and unfavorable health effects due to exposure to xenobiotics. Compr Rev Food Sci Food Saf 15:982–1017

    CAS  Google Scholar 

  8. 8.

    Hakkinen SH, Karenlampi SO, Heinonen IM, Mykkanen HM, Torronen AR (1999) Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J Agric Food Chem 47:2274–2279

    CAS  PubMed  Google Scholar 

  9. 9.

    Daskalova E, Delchev S, Peeva Y et al (2015) Antiatherogenic and cardioprotective effects of black chokeberry (Aronia melanocarpa) juice in aging rats. Evid Based Complement Alternat Med 2015:717439

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Rodriguez-Mateos A, Heiss C, Borges G, Crozier A (2013) Berry (poly) phenols and cardiovascular health. J Agric Food Chem 62:3842–3851

    PubMed  Google Scholar 

  11. 11.

    Jakovljevic V, Milic P, Bradic J et al (2019) Standardized Aronia melanocarpa extract as novel supplement against metabolic syndrome: a rat model. Int J Mol Sci 20:6

    Google Scholar 

  12. 12.

    Orcic D, Franciskovic M, Bekvalac K et al (2014) Performance liquid chromatography coupled with tandem mass spectrometric detection. Food Chem 143:48–53

    CAS  PubMed  Google Scholar 

  13. 13.

    Suman RK, Ray Mohanty I, Borde MK, Maheshwari U, Deshmukh YA (2016) Development of an experimental model of diabetes co-existing with metabolic syndrome in rats. Adv Pharmacol Sci. https://doi.org/10.1155/2016/9463476

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Skovsø S (2014) Modeling type 2 diabetes in rats using high fat diet and streptozotocin. J Diabetes Investig 5(4):349–358

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P (2005) Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res 52:313–320

    CAS  PubMed  Google Scholar 

  16. 16.

    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    CAS  PubMed  Google Scholar 

  17. 17.

    Glaser C, Demmelmair H, Koletzko B (2010) High-throughput analysis of total plasma fatty acid composition with direct in situ transesterification. PLoS ONE 5:e12045

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Aristizabal JC, Barona J, Gonzalez-Zapata LI, Deossa GC, Estrada A (2016) Fatty acid content of plasma triglycerides may contribute to the heterogeneity in the relationship between abdominal obesity and the metabolic syndrome. Metab Syndr Relat D 14:311–317

    CAS  Google Scholar 

  19. 19.

    Poreba R, Skoczynska A, Gac P et al (2009) Drinking of chokeberry juice from the ecological farm Dzieciolowo and distensibility of brachial artery in men with mild hypercholesterolemia. Ann Agric Environ Med 16:305–308

    CAS  PubMed  Google Scholar 

  20. 20.

    Broncel M, Kozirog M, Duchnowicz P, Koter-Michalak M, Sikora J, Chojnowska-Jezierska J (2010) Aronia melanocarpa extract reduces blood pressure, serum endothelin, lipid, and oxidative stress marker levels in patients with metabolic syndrome. Med Sci Monit 16:CR28–CR34

    PubMed  Google Scholar 

  21. 21.

    Mitra SK, Gopumadhavan S, Muralidhar TS, Anturlikar SD, Sujatha MB (1995) Effect of D-400, a herbomineral preparation on lipid profile, glycated hemoglobin and glucose tolerance in streptozotocin induced diabetes in rats. Indian J Exp Biol 33:798–800

    CAS  PubMed  Google Scholar 

  22. 22.

    Valcheva-Kuzmanova S, Kuzmanov K, Mihova V, Krasnaliev I, Borisova P, Belcheva A (2007) Antihyperlipidemic effect of Aronia melanocarpa fruit juice in rats fed a high-cholesterol diet. Plant Foods Hum Nutr 62:19–24

    CAS  PubMed  Google Scholar 

  23. 23.

    Qin B, Anderson RA (2012) An extract of chokeberry attenuates weight gain and modulates insulin, adipogenic and inflammatory signalling pathways in epididymal adipose tissue of rats fed a fructose-rich diet. Brit J Nutr 108:581–587

    CAS  PubMed  Google Scholar 

  24. 24.

    Duchnowicz P, Nowicka A, Koter-Michalak M, Broncel M (2012) In vivo influence of extract from Aronia melanocarpa on the erythrocyte membranes in patients with hypercholesterolemia. Med Sci Monit 8:CR569–CR574

    Google Scholar 

  25. 25.

    Broncel M, Kozirog M, Duchnowicz P, Koter-Michalak M, Sikora J, Chojnowska-Jezierska J (2010) Aronia melanocarpa extract reduces blood pressure, serum endothelin, lipid, and oxidative stress marker levels in patients with metabolic syndrome. Med Sci Monit 16:CR28–CR34

    PubMed  Google Scholar 

  26. 26.

    Devi R, Sharma DK (2004) Hypolipidemic effect of different extracts of Clerodendron colebrookianum Walp in normal and high-fat diet fed rats. J Ethnopharmacol 90:63–68

    PubMed  Google Scholar 

  27. 27.

    Gnoni GV, Paglialonga G (2009) Resveratrol inhibits fatty acid and triacylglycerol synthesis in rat hepatocytes. Eur J Clin Invest 39:211–218

    CAS  PubMed  Google Scholar 

  28. 28.

    Parhofer KG (2015) Interaction between glucose and lipid metabolism: more than diabetic dyslipidemia. Diabetes Metab J 39:353–362

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Ziaee A, Zamansoltani F, Nassiri-Asl M, Abbasi E (2009) Effects of rutin on lipid profile in hypercholesterolaemic rats. Basic Clin Pharmacol Toxicol 104:253–258

    CAS  PubMed  Google Scholar 

  30. 30.

    Choi I, Park Y, Choi H, Lee EH (2006) Anti-adipogenic activity of rutin in 3T3-L1 cells and mice fed with high-fat diet. BioFactors 26:273–281

    CAS  PubMed  Google Scholar 

  31. 31.

    Kawser Hossain M, Abdal Dayem A, Han J et al (2016) Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. Int J Mol Sci 17:569

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Stern JH, Rutkowski JM, Scherer PE (2016) Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab 23:770–784

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Katare C, Saxena S, Agrawal S et al (2014) Lipid-lowering and antioxidant functions of bottle gourd (Lagenaria siceraria) extract in human dyslipidemia. J Evid Based Complement Altern Med 19:112–118

    Google Scholar 

  34. 34.

    Kim B, Park Y, Wegner CJ, Bolling BW, Lee J (2013) Polyphenol-richblackchokeberry(Aroniamelanocarpa) extract regulates the expression of genes critical for intestinal cholesterol flux in caco-2 cells. J Nutr Biochem 24:1564–1570

    CAS  PubMed  Google Scholar 

  35. 35.

    Kotronen A, Velagapudi VR, Yetukuri L et al (2009) Serum saturated fatty acids containing triacylglycerols are better markers of insulin resistance than total serum triacylglycerol concentrations. Diabetologia 52:684–690

    CAS  PubMed  Google Scholar 

  36. 36.

    Liu TW, Heden TD, Matthew Morris E, Fritsche KL, Vieira-Potter VJ, Thyfault JP (2015) High-fat diet alters serum fatty acid profiles in obesity prone rats: implications for in vitro studies. Lipids 50:997–1008

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Vucic V, Tepsic J, Arsic A, Popovic T, Debeljak-Martacic J, Glibetic M (2012) Fatty acid content of vegetable oils and assessment of their consumption in Serbia. Acta Aliment 41:343–350

    CAS  Google Scholar 

  38. 38.

    Rafiei H, Omidian K, Bandy B (2019) Dietary polyphenols protect against oleic acid-induced steatosis in an in vitro model of NAFLD by modulating lipid metabolism and improving mitochondrial function. Nutrients 11:541

    CAS  PubMed Central  Google Scholar 

  39. 39.

    Park CH, Kim JH, Lee EB et al (2018) Aronia melanocarpa extract ameliorates hepatic lipid metabolism through PPARγ2 downregulation. PLoS ONE 12:e0169685

    Google Scholar 

  40. 40.

    Warensjo E, Riserus U, Vessby B (2005) Fatty acid composition of serum lipids predicts the development of the metabolic syndrome in men. Diabetologia 48:1999–2005

    CAS  PubMed  Google Scholar 

  41. 41.

    Bjermo H, Riserus U (2010) Role of hepatic desaturases in obesity-related metabolic disorders. Curr Opin Clin Nutr Metab Care 13:703–708

    CAS  PubMed  Google Scholar 

  42. 42.

    Chong MF, Hodson L, Bickerton AS et al (2008) Parallel activation of de novo lipogenesis and stearoyl-CoA desaturase activity after 3 d of high-carbohydrate feeding. Am J Clin Nutr 87:817–823

    CAS  PubMed  Google Scholar 

  43. 43.

    Carpentier YA, Portois L, Malaisse WJ (2006) n-3 fatty acids and the metabolic syndrome. Am J Clin Nutr 83:1499S–1504S

    CAS  PubMed  Google Scholar 

  44. 44.

    Piñeiro-Corrales G, Lago Rivero N, Culebras-Fernández JM (2013) Role of omega-3 fatty acids in cardiovascular disease prevention. Nutr Hosp 28:1–5

    PubMed  Google Scholar 

  45. 45.

    Veselinovic M, Vasiljevic D, Vucic V et al (2017) Clinical benefits of n-3 PUFA and ɤ-linolenic acid in patients with rheumatoid arthritis. Nutrients 9:325

    PubMed Central  Google Scholar 

  46. 46.

    Ristic-Medic D, Vucic V, Takic M, Karadzic I, Glibetic M (2013) Polyunsaturated fatty acids in health and disease. J Serb Chem Soc 78:1269

    CAS  Google Scholar 

  47. 47.

    Simopoulos AP (2013) Dietary omega-3 fatty acid deficiency and high fructose intake in the development of metabolic syndrome, brain metabolic abnormalities, and non-alcoholic fatty liver disease. Nutrients 5:2901–2923

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Novgorodtseva TP, Kantur TA, Karaman YK, Antonyuk MV, Zhukova NV (2011) Modification of fatty acids composition in erythrocytes lipids in arterial hypertension associated with dyslipidemia. Lipids Health Dis 10:18

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Kardum N, Takic M, Savikin K et al (2014) Effects of polyphenol-rich chokeberry juice on cellular antioxidant enzymes and membrane lipid status in healthy women. J Funct Foods 9:89–97

    CAS  Google Scholar 

  50. 50.

    Petrovic S, Arsic A, Glibetic M, Cikiriz N, Jakovljevic V, Vucic V (2016) The effects of polyphenol-rich chokeberry juice on fatty acid profiles and lipid peroxidation of active handball players: results from a randomized, double-blind, placebo-controlled study. Can J Physiol Pharmacol 94:1058–1063

    CAS  PubMed  Google Scholar 

  51. 51.

    Peredo-Escárcega AE, Guarner-Lans V, Pérez-Torres I et al (2015) The Combination of resveratrol and quercetin attenuates metabolic syndrome in rats by modifying the serum fatty acid composition and by upregulating SIRT 1 and SIRT 2 expression in white adipose tissue. Evid Based Complement Alternat Med 2015:474032

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Toufektsian MC, Salen P, Laporte F, Tonelli C, de Lorgeril M (2011) Dietary flavonoids increase plasma very long-chain (n-3) fatty acids in rats. J Nutr 141:37–41

    CAS  PubMed  Google Scholar 

  53. 53.

    Graf D, Seifert S, Jaudszus A, Bub A, Watzl B (2013) Anthocyanin-rich juice lowers serum cholesterol, leptin, and resistin and improves plasma fatty acid composition in fischer rats. PLoS ONE 8:e66690

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Yang B, Ding F, Yan J et al (2016) Exploratory serum fatty acid patterns associated with blood pressure in community-dwelling middle-aged and elderly Chinese. Lipids Health Dis 15:58

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Gao M, Ma Y, Liu D (2015) High-fat diet-induced adiposity, adipose inflammation, hepatic steatosis and hyperinsulinemia in outbred CD-1 mice. PLoS ONE 3:e0119784

    Google Scholar 

  56. 56.

    Vucic V (2013) The role of dietary polyunsaturated fatty acids in inflammation. SJECR 14:93–99

    Google Scholar 

  57. 57.

    Graf D, Seifert S, Jaudszus A, Bub A, Watzl B (2013) Anthocyanin-rich juice lowers serum cholesterol, leptin, and resistin and improves plasma fatty acid composition in fischer rats. PLoS ONE 8:e66690

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Mayneris-Perxachs J, Guerendiain M, Castellote AI et al (2014) Plasma fatty acid composition, estimated desaturase activities, and their relation with the metabolic syndrome in a population at high risk of cardiovascular disease. Clin Nutr 33:90–97

    CAS  PubMed  Google Scholar 

  59. 59.

    Horrobin DF (1997) Essential fatty acids in the management of impaired nerve function in diabetes. Diabetes 46:S90–S93

    CAS  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Vladimir Jakovljevic.

Ethics declarations

Conflicts of interest

The authors declare they have no conflicts of interest.

Ethical approval

This study was conducted in the laboratory for Cardiovascular Physiology (Faculty of Medical Sciences, University of Kragujevac, Serbia). Animals treatment and protocol employed were approved by the Ethical Committee for the welfare of experimental animals of the Faculty of Medical Sciences at the University of Kragujevac, Serbia on July 30, 2017 (number: 119-01-5/14/2017-09). The experimental procedures have been carried out in accordance with the EU Directive for the welfare of laboratory animals (86/609/EEC) and the principles of Good Laboratory Practice.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Milic, P., Jeremic, J., Zivkovic, V. et al. Effects of different dietary regimes alone or in combination with standardized Aronia melanocarpa extract supplementation on lipid and fatty acids profiles in rats. Mol Cell Biochem 461, 141–150 (2019). https://doi.org/10.1007/s11010-019-03597-6

Download citation


  • Aronia melanocarpa
  • Fatty acids
  • Lipid profiles
  • Metabolic syndrome
  • Dietary pattern