Skip to main content
Log in

Lipid-bound apoLp-III is less effective in binding to lipopolysaccharides and phosphatidylglycerol vesicles compared to the lipid-free protein

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Apolipophorin III (apoLp-III) is an insect apolipoprotein that is predominantly present in a lipid-free state in the hemolymph. ApoLp-III from Galleria mellonella is able to interact with membrane components of Gram-negative bacteria, as part of an innate immune response to infection. The protein also exists in a lipoprotein-associated state when large amounts of lipids are mobilized. Therefore, lipid-bound apoLp-III was generated to analyze the binding interaction with lipopolysaccharides and phosphatidylglycerol, both abundantly present in membranes of Gram-negative bacteria. G. mellonella apoLp-III was lipidated with palmitoyl-2-oleoyl-glycero-3-phosphocholine to form lipid-protein complexes. The particle shape was discoidal with a 16.4 nm diameter, a molecular mass of 460 kDa, and contained 4 apoLp-III molecules. These discoidal lipoproteins were used to compare the lipopolysaccharide and phosphatidylglycerol binding activity with lipid-free apoLp-III. Lipopolysaccharide binding interaction was analyzed by non-denaturing PAGE, showing reduced ability of the lipid-bound protein to form lipopolysaccharide-protein complexes and to disaggregate lipopolysaccharide micelles. The apoLp-III-induced release of calcein from phosphatidylglycerol vesicles was decreased approximately fivefold when the protein was in the lipid-bound form, indicating reduced binding interaction with the phosphatidylglycerol membrane surface. These results show that when apoLp-III adopts a lipid-bound conformation, it is markedly less effective in interacting with lipopolysaccharides and phosphatidylglycerol vesicles. Thus, in order to be an effective antimicrobial protein, apoLp-III needs to be in a lipid-free state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zdybicka-Barabas A, Cytryńska M (2013) Apolipophorins and insects immune response. ISJ 10:58–68

    Google Scholar 

  2. Weise C, Franke P, Kopácek P, Wiesner A (1998) Primary structure of apolipophorin-III from the greater wax moth, Galleria mellonella. J Protein Chem 17:633–641

    Article  CAS  PubMed  Google Scholar 

  3. Wang J, Sykes BD, Ryan RO (2002) Structural basis for the conformational adaptability of apolipophorin III, a helix-bundle exchangeable apolipoprotein. Proc Natl Acad Sci USA 99:1188–1193

    Article  CAS  PubMed  Google Scholar 

  4. Breiter DR, Kanost MR, Benning MM, Wesenberg G, Law JH, Wells MA, Rayment I, Holden HM (1991) Molecular structure of an apolipoprotein determined at 2.5 Å resolution. Biochemistry 30:603–608

    Article  CAS  PubMed  Google Scholar 

  5. Hård K, Van Doorn JM, Thomas-Oates JE, Kamerling JP, Van der Horst DJ (1993) Structure of the Asn-linked oligosaccharides of apolipophorin III from the insect Locusta migratoria. Carbohydrate-linked 2-aminoethylphosphonate as a constituent of a glycoprotein. Biochemistry 32:766–775

    Article  PubMed  Google Scholar 

  6. Weers PMM, Ryan RO (2006) Apolipophorin III: role model apolipoprotein. Insect Biochem Mol Biol 36:231–240

    Article  CAS  PubMed  Google Scholar 

  7. Weers PMM, Ryan RO (2003) Apolipophorin III: a lipid-triggered molecular switch. Insect Biochem Mol Biol 33:1249–1260

    Article  CAS  PubMed  Google Scholar 

  8. Van der Horst DJ, van Hoof D, van Marrewijk WJ, Rodenburg KW (2002) Alternative lipid mobilization: the insect shuttle system. Mol Cell Biochem 239:113–119

    Article  PubMed  Google Scholar 

  9. Wientzek M, Kay CM, Oikawa K, Ryan RO (1994) Binding of insect apolipophorin III to dimyristoylphosphatidylcholine vesicles. Evidence for a conformational change. J Biol Chem 269:4605–4612

    CAS  PubMed  Google Scholar 

  10. Van der Horst DJ, Rodenburg KW (2010) Locust flight activity as a model for hormonal regulation of lipid mobilization and transport. J Insect Physiol 56:844–853

    Article  CAS  PubMed  Google Scholar 

  11. Kawooya JK, van der Horst DJ, van Heusden MC, Brigot BL, van Antwerpen R, Law JH (1991) Lipophorin structure analyzed by in vitro treatment with lipases. J Lipid Res 32:1781–1788

    CAS  PubMed  Google Scholar 

  12. Weers PMM, Cabrera J, Abdullahi WE, Hsu T-C (2005) Role of buried polar residues in helix bundle stability and lipid binding of apolipophorin III: destabilization by threonine 31. Biochemistry 44:8810–8816

    Article  CAS  PubMed  Google Scholar 

  13. Thistle J, Martinon D, Weers PMM (2015) Helix 1 tryptophan variants in Galleria mellonella apolipophorin III. Chem Phys Lipids 193:18–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wiesner A, Losen S, Kopáček P, Weise C, Götz P (1997) Isolated apolipophorin III from Galleria mellonella stimulates the immune reactions of this insect. J Insect Physiol 43:383–391

    Article  CAS  PubMed  Google Scholar 

  15. Niere M, Meisslitzer C, Dettloff M, Weise C, Ziegler M, Wiesner A (1999) Insect immune activation by recombinant Galleria mellonella apolipophorin III. Biochim Biophys Acta 1433:16–26

    Article  CAS  PubMed  Google Scholar 

  16. Halwani AE, Dunphy GB (1999) Apolipophorin-III in Galleria mellonella potentiates hemolymph lytic activity. Dev Comp Immunol 23:563–570

    Article  CAS  PubMed  Google Scholar 

  17. Halwani AE, Niven DF, Dunphy GB (2000) Apolipophorin-III and the interactions of lipoteichoic acids with the immediate immune responses of Galleria mellonella. J Invertebr Pathol 76:233–241

    Article  CAS  PubMed  Google Scholar 

  18. Zdybicka-Barabas A, Palusińska-Szysz M, Gruszecki WI, Mak P, Cytryńska M (2014) Galleria mellonella apolipophorin III—an apolipoprotein with anti-Legionella pneumophila activity. Biochim Biophys Acta 1838:2689–2697

    Article  CAS  PubMed  Google Scholar 

  19. Pratt CC, Weers PMM (2004) Lipopolysaccharide binding of an exchangeable apolipoprotein, apolipophorin III, from Galleria mellonella. Biol Chem 385:1113–1119

    Article  CAS  PubMed  Google Scholar 

  20. Iimura Y, Ishikawa H, Yamamoto K, Sehnal F (1998) Hemagglutinating properties of apolipophorin III from the hemolymph of Galleria mellonella larvae. Arch Insect Biochem Physiol 38:119–125

    Article  CAS  PubMed  Google Scholar 

  21. Zdybicka-Barabas A, Cytryńska M (2011) Involvement of apolipophorin III in antibacterial defense of Galleria mellonella larvae. Comp Biochem Physiol B: Biochem Mol Biol 158:90–98

    Article  CAS  Google Scholar 

  22. Dettloff M, Kaiser B, Wiesner A (2001) Localization of injected apolipophorin III in vivo—new insights into the immune activation process directed by this protein. J Insect Physiol 47:789–797

    Article  CAS  PubMed  Google Scholar 

  23. Dettloff M, Wittwer D, Weise C, Wiesner A (2001) Lipophorin of lower density is formed during immune responses in the lepidopteran insect Galleria mellonella. Cell Tissue Res 306:449–458

    Article  CAS  PubMed  Google Scholar 

  24. Niere M, Dettloff M, Maier T, Ziegler M, Wiesner A (2001) Insect immune activation by apolipophorin III is correlated with the lipid-binding properties of this protein. Biochemistry 40:11502–11508

    Article  CAS  PubMed  Google Scholar 

  25. Leon LJ, Pratt CC, Vasquez LJ, Weers PMM (2006) Tyrosine fluorescence analysis of apolipophorin III-lipopolysaccharide interaction. Arch Biochem Biophys 452:38–45

    Article  CAS  PubMed  Google Scholar 

  26. Leon LJ, Idangodage H, Wan LC-P, Weers PMM (2006) Apolipophorin III: lipopolysaccharide binding requires helix bundle opening. Biochem Biophys Res Commun 348:1322–1328

    Article  CAS  Google Scholar 

  27. Oztug M, Martinon D, Weers PMM (2012) Characterization of the apoLp-III/LPS complex: insight into the mode of binding interaction. Biochemistry 51:6220–6227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee CH, Tsai CM (1999) Quantification of bacterial lipopolysaccharides by the purpald assay: measuring formaldehyde generated from 2-keto-3-deoxyoctonate and heptose at the inner core by periodate oxidation. Anal Biochem 267:161–168

    Article  CAS  PubMed  Google Scholar 

  29. Ames BN (1966) Assay of inorganic phosphate, total phosphate and phosphatases. Methods Enzymol 8:115–118

    Article  CAS  Google Scholar 

  30. Liu H, Scraba DG, Ryan RO (1993) Prevention of phospholipase-C induced aggregation of low density lipoprotein by amphipathic apolipoproteins. FEBS Lett 316:27–33

    Article  CAS  PubMed  Google Scholar 

  31. Beck WHJ, Adams CP, Biglang-awa IM, Patel AB, Vincent H, Haas-Stapleton EJ, Weers PMM (2013) Apolipoprotein A–I binding to anionic vesicles and lipopolysaccharides: role for lysine residues in antimicrobial properties. Biochim Biophys Acta (Biomembranes) 1828:1503–1510

    Article  CAS  Google Scholar 

  32. Dettloff M, Weers PMM, Niere M, Kay CM, Ryan RO, Wiesner A (2001) An N-terminal three-helix fragment of the exchangeable insect apolipoprotein apolipophorin III conserves the lipid binding properties of wild type protein. Biochemistry 40:3150–3157

    Article  CAS  PubMed  Google Scholar 

  33. Sahoo D, Weers PMM, Ryan RO, Narayanaswami V (2002) Lipid-triggered conformational switch of apolipophorin III helix bundle to an extended helix organization. J Mol Biol 321:201–214

    Article  CAS  PubMed  Google Scholar 

  34. Garda HA, Arrese EL, Soulages JL (2002) Structure of apolipophorin-III in discoidal lipoproteins. Interhelical distances in the lipid-bound state and conformational change upon binding to lipid. J Biol Chem 277:19773–19782

    Article  CAS  PubMed  Google Scholar 

  35. Mullen L, Goldsworthy G (2003) Changes in lipophorins are related to the activation of phenoloxidase in the haemolymph of Locusta migratoria in response to injection of immunogens. Insect Biochem Mol Biol 33:661–670

    Article  CAS  PubMed  Google Scholar 

  36. Mullen LM, Lightfoot ME, Goldsworthy GJ (2004) Induced hyperlipaemia and immune challenge in locusts. J Insect Physiol 50:409–417

    Article  CAS  PubMed  Google Scholar 

  37. Liu H, Malhotra V, Ryan RO (1991) Displacement of apolipophorin III from the surface of low density lipophorin by human apolipoprotein A-I. Biochem Biophys Res Commun 179:734–740

    Article  CAS  PubMed  Google Scholar 

  38. Goldsworthy GJ, Opoku-Ware K, Mullen LM (2005) Adipokinetic hormone and the immune responses of locusts to infection. Ann N Y Acad Sci 1040:106–113

    Article  CAS  PubMed  Google Scholar 

  39. Adamo SA, Roberts JL, Easy RH, Ross NW (2008) Competition between immune function and lipid transport for the protein apolipophorin III leads to stress-induced immunosuppression in crickets. J Exp Biol 211:531–538

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number GM089564. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Funding

This study was funded by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number GM089564.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M. M. Weers.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wijeratne, T.U., Weers, P.M.M. Lipid-bound apoLp-III is less effective in binding to lipopolysaccharides and phosphatidylglycerol vesicles compared to the lipid-free protein. Mol Cell Biochem 458, 61–70 (2019). https://doi.org/10.1007/s11010-019-03530-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-019-03530-x

Keywords

Navigation