Skip to main content
Log in

Hypolipidemic effect of novel 2,5-bis(4-hydroxybenzylidenamino)-1,3,4-thiadiazole as potential peroxisome proliferation-activated receptor-α agonist in acute hyperlipidemic rat model

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The development of new antihyperlipidemic agents with higher potency and lower side effects is of high priority. In this study, 1,3,4 thiadiazole Schiff base derivatives were synthesized as potential peroxisome proliferation-activated receptor-α (PPARα) agonists and characterized using elemental analysis, FTIR, 1H-NMR, 13C-NMR and mass spectroscopy and then tested for their hypolipidemic activity in Triton WR-1339-induced acute hyperlipidemic rat model in comparison with bezafibrate. The compounds showed significant hypolipidemic activity. Induced fit docking showed that the compounds are potential activators of PPARα with binding scores − 8.00 Kcal/mol for 2,5-bis(4-hydroxybenzylidenamino)-1,3,4-thiadiazole. PCR array analysis showed an increase in the expression of several genes involved in lipid metabolism through mitochondrial fatty acid β oxidation and are part of PPARα signaling pathway including Acsm3, Fabp4 and Hmgcs1. Gene expression of Lrp12 and Lrp1b involved in LDL uptake by liver cells and Cyp7a1 involved in cholesterol catabolism were also found to be upregulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahmad U, Ahmad RS, Arshad MS, Mushtaq Z, Hussain SM, Hameed A (2018) Antihyperlipidemic efficacy of aqueous extract of Stevia rebaudiana Bertoni in albino rats. Lipids Health Dis 17(1):175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aqeel MT (2018) antihyperlipidemic studies of newly synthesized phenolic derivatives: in silico and in vivo approaches. Drug Des Devel Ther 12:2443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chandrakantha B, Isloor AM, Shetty P, Fun HK, Hegde G (2014) Synthesis and biological evaluation of novel substituted 1,3,4-thiadiazole and 2,6-di aryl substituted imidazo [2,1-b][1,3,4] thiadiazole derivatives. Eur J Med Chem 71(7):316–323

    Article  CAS  PubMed  Google Scholar 

  4. Patel HM, Noolvi MN, Goyal A, Thippeswamy B (2013) 2,5,6-Trisubstituted imidazo [2,1-b] [1,3,4] thiadiazoles: search for antihyperlipidemic agents. Eur J Med Chem 65:119–133

    Article  CAS  PubMed  Google Scholar 

  5. Matysiak J (2015) Biological and pharmacological activities of 1, 3,4-thiadiazole based compounds. Mini Rev Med Chem 15(9):762–775

    Article  CAS  PubMed  Google Scholar 

  6. Shen L, Zhang Y, Wang A, Sieber-McMaster E, Chen X, Pelton P, Xu JZ, Yang M, Zhu P, Zhou L, Reuman M (2007) Synthesis and identification of [1,2,4] thiadiazole derivatives as a new series of potent and orally active dual agonists of peroxisome proliferator-activated receptors α and δ. J Med Chem 50(16):3954–3963

    Article  CAS  PubMed  Google Scholar 

  7. Jain SK, Mishra P (2014) Appraisal of analgesic and anti-inflammatory activity of some 2,5-disubstituted-1,3,4-thiadiazoles. Int J Curr Microbiol App Sci 3:849–855

    CAS  Google Scholar 

  8. Da Silva CM, Da Silva DL, Modolo LV, Alves RB, De Resende MA, Martins CV, De Fátima (2011) Â. Schiff bases: a short review of their antimicrobial activities. J Adv Res 2(1):1–8

    Article  Google Scholar 

  9. Geldenhuys WJ, Lin L, Darvesh AS, Sadana P (2017) Emerging strategies of targeting lipoprotein lipase for metabolic and cardiovascular diseases. Drug Discov Today 22(2):352–365. https://doi.org/10.1016/j.drudis.2016.10.007

    Article  CAS  PubMed  Google Scholar 

  10. Kwon RH, Ha BJ (2014) Protection of Saururus chinensis extract against liver oxidative stress in rats of triton WR-1339-induced hyperlipidemia. Toxicol Res 30(4):291–296. https://doi.org/10.5487/tr.2014.30.4.291

    Article  PubMed  PubMed Central  Google Scholar 

  11. Baldissera MD, Souza CF, Grando TH, Doleski PH, Boligon AA, Stefani LM, Monteiro SG (2017) Hypolipidemic effect of β-caryophyllene to treat hyperlipidemic rats. Naunyn Schmiedebergs Arch Pharmacol 390(2):215–223. https://doi.org/10.1007/s00210-016-1326-3

    Article  CAS  PubMed  Google Scholar 

  12. Hamadneh L, Al-Essa L, Hikmat S, Al-Qirim T, Abu Sheikha G, Al-Hiari Y, Azmy N, Shattat G (2017) N-(3-Benzoylphenyl)-1H-indole-2-carboxamide decreases triglyceride levels by downregulation of Apoc3 gene expression in acute hyperlipidemic rat model. Mol Cell Biochem 431(1–2):133–138. https://doi.org/10.1007/s11010-017-2983-3

    Article  CAS  PubMed  Google Scholar 

  13. Charan J, Kantharia ND (2013) How to calculate sample size in animal studies? J Pharmacol Pharmacother 4:303–306. https://doi.org/10.4103/0976-500X.119726

    Article  PubMed  PubMed Central  Google Scholar 

  14. Al-Najdawi M, Al-Hiari Y, Al-Qirim T, Shattat G, Al-Zweri M, Abu Sheikha G (2014) Synthesis and pharmacological evaluation of novel unsubstituted indole-anthraquinone carboxamide derivatives as potent antihyperlipidemic agents. Z Naturforsch C 69(1–2):21–28

    Article  CAS  PubMed  Google Scholar 

  15. Abu Farha R, Bustanji Y, Al-Hiari Y, Al-Qirim T, Abu Shiekha G, Albashiti R (2016) Lipid lowering activity of novel N-(benzoylphenyl)pyridine-3-carboxamide derivatives in Triton WR-1339-induced hyperlipidemic rats. J Enzyme Inhib Med Chem 31(sup4):138–144

    Article  CAS  PubMed  Google Scholar 

  16. Xu H, Stanley B, Montana G, Lambert H, Shearer G, Cobb E, McKee D, Galardi M, Plunket D, Nolte T, Parks J, Moore T, Kliewer A, Willson M, Stimmel B (2002) Structural basis for antagonist-mediated recruitment of nuclear co-repressors by PPAR alpha. Nature 14(415):813–817

    Article  CAS  Google Scholar 

  17. Protein Preparation Wizard (2016) M. Macromodel, and QPLD-dock, Schrödinger, LLC, Portland, OR, USA, p 97204

  18. Haider S, Alam MS, Hamid H (2015) 1, 3, 4-Thiadiazoles: A potent multi targeted pharmacological scaffold. Eur J Med Chem 92:156–177

    Article  CAS  PubMed  Google Scholar 

  19. Pawlak M, Lefebvre P, Staels B (2015) Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol 62(3):720–733. https://doi.org/10.1016/j.jhep.2014.10.039

    Article  CAS  Google Scholar 

  20. Staels B, Maes M, Zambon A (2008) Fibrates and future PPAR alpha agonists in the treatment of cardiovascular disease. Nat Clin Pract Cardiovasc Med 5:542–553

    Article  CAS  PubMed  Google Scholar 

  21. Olivecrona G (2016) Role of lipoprotein lipase in lipid metabolism. Curr Opin Lipidol 27(3):233–232. https://doi.org/10.1097/MOL.0000000000000297

    Article  CAS  PubMed  Google Scholar 

  22. Rakhshandehroo M, Hooiveld G, Müller M, Kersten S (2009) Comparative analysis of gene regulation by the transcription factor PPARα between mouse and human. PloS ONE 4(8):e6796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kersten S, Stienstra R (2017) The role and regulation of the peroxisome proliferator activated receptor alpha in human liver. Biochimie 136:75–84. https://doi.org/10.1016/j.biochi.2016.12.019

    Article  CAS  PubMed  Google Scholar 

  24. Rakhshandehroo M, Sanderson LM, Matilainen M, Stienstra R, Carlberg C, De Groot PJ, Müller M, Kersten S (2007) Comprehensive analysis of PPARα-dependent regulation of hepatic lipid metabolism by expression profiling. In: PPAR research, 2007

  25. Grygiel-Górniak B (2014) Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications: a review. Nutr J 13:17. https://doi.org/10.1186/1475-2891-13-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Han T, Lv Y, Wang S, Hu T, Hong H, Fu Z (2019) PPARγ overexpression regulates cholesterol metabolism in human L02 hepatocytes. J Pharm Sci 139(1)(1):1–8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Al-Zaytoonah University of Jordan for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lama A. Hamadneh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 167 KB)

Supplementary material 2 (XLS 167 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamadneh, L.A., Sabbah, D.A., Hikmat, S.J. et al. Hypolipidemic effect of novel 2,5-bis(4-hydroxybenzylidenamino)-1,3,4-thiadiazole as potential peroxisome proliferation-activated receptor-α agonist in acute hyperlipidemic rat model. Mol Cell Biochem 458, 39–47 (2019). https://doi.org/10.1007/s11010-019-03528-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-019-03528-5

Keywords

Navigation