The impact of aerobic and anaerobic training regimes on blood pressure in normotensive and hypertensive rats: focus on redox changes


This study was aimed to assess the impact of aerobic and anaerobic type of exercise on blood pressure and redox status in normotensive and hypertensive rats. After 1 week of preconditioning feeding and 1 week of preconditioning running regimen, Wistar albino rats (n = 72; bw: 270 ± 50 g) were randomly assigned to three groups according to running protocol (high-intensity interval training (HIIT) or moderate-intensity training (MIT)): sedentary control, MIT, HIIT; spontaneous hypertensive sedentary control (SHR), SHR + MIT and SHR + HIIT. Blood pressure (BP) measurement was performed by a tail-cuff noninvasive method BP system. After 48 h of rest following the final training, the rats were fasted for 24 h and sacrificed under ketamine/xylazine anesthesia and blood samples were collected. The level of the next prooxidants were measured: superoxide anion radical (O2); hydrogen peroxide (H2O2); nitrite level (NO2) and index of lipid peroxidation (thiobarbituric acid reactive substances), and the activity of antioxidative enzymes: reduced glutathione (GSH) superoxide dismutase (SOD) and catalase (CAT) activity. After the last week of running, HIIT strongly affected SP, DP, and HR in SHR rats compared to other hypertensive rats, as well as after MIT in normotensive conditions. We have found that HIIT training protocol induced a higher increase of O2 and H2O2 as compared to MIT. Findings of the present study pointed out that contrary to normotensive conditions, in hypertensive conditions both training regimes reduced the BP levels, which was more prominent in case of HIIT. In addition, MIT seems to be connected with milder disturbance of pro-oxidant production and better antioxidant response.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Oxidative stress (2018) role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget 9(24):17181–17198.

    Article  Google Scholar 

  2. 2.

    Farah BQ, Germano-Soares AH, Rodrigues SLC, Santos CX, Barbosa SS, Vianna LC, Cornelissen VA, Ritti-Dias RM (2017) Acute and chronic effects of isometric handgrip exercise on cardiovascular variables in hypertensive patients: a systematic review. Sports (Basel) 5(3). E55.

    Article  Google Scholar 

  3. 3.

    Hakansson S, Jones MD, Ristov M, Marcos L, Clark T, Ram A, Morey R, Franklin A, McCarthy C, Carli L, Ward R, Keech A (2018) Intensity-dependent effects of aerobic training on pressure pain threshold in overweight males: a randomised trial. Eur J Pain.

    Article  PubMed  Google Scholar 

  4. 4.

    O’Driscoll JM, Wright SM, Taylor KA, Coleman DA, Sharma R, Wiles JD (1985) Cardiac autonomic and left ventricular mechanics following high intensity interval training: a randomised cross-over controlled study. J Appl Physiol.

    Article  Google Scholar 

  5. 5.

    Li FH, Li T, Ai JY, Sun L, Min Z, Duan R, Zhu L, Liu YY, Liu TC (2018) Beneficial autophagic activities, mitochondrial function, and metabolic phenotype adaptations promoted by high-intensity interval training in a rat model. Front Physiol 9:571.

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Costa EC, Hay JL, Kehler DS, Boreskie KF, Arora RC, Umpierre D, Szwajcer A, Duhamel TA (2018) Effects of high-intensity interval training versus moderate-intensity continuous training on blood pressure in adults with pre- to established hypertension: a systematic review and meta-analysis of randomized trials. Sports Med.

    Article  PubMed  Google Scholar 

  7. 7.

    Green DJ, Eijsvogels T, Bouts YM, Maiorana AJ, Naylor LH, Scholten RR, Spaanderman ME, Pugh CJ, Sprung VS, Schreuder T, Jones H, Cable T, Hopman MT, Thijssen DH (2014) Exercise training and artery function in humans: nonresponse and its relationship to cardiovascular risk factors. J Appl Physiol 117(4):345–352.

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    González-Ruíz K, Correa-Bautista JE, Izquierdo M, García-Hermoso A, Dominguez-Sanchez MA, Bustos-Cruz RH, García-Prieto JC, Martínez-Vizcaíno V, Lobelo F, González-Jiménez E, Prieto-Benavides DH, Tordecilla-Sanders A, Schmidt-RioValle J, Perez G, Ramírez-Vélez R (2018) Effects of an exercise program on hepatic metabolism, hepatic fat, and cardiovascular health in overweight/obese adolescents from Bogotá, Colombia (the HEPAFIT study): study protocol for a randomized controlled trial. Trials 19(1):330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Sharman JE, La Gerche A, Coombes JS (2015) Exercise and cardiovascular risk in patients with hypertension. Am J Hypertens 28(2):147–158.

    Article  PubMed  Google Scholar 

  10. 10.

    Diaz KM, Shimbo D (2013) Physical activity and the prevention of hypertension. Curr Hypertens Rep 15(6):659–668.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Agnoletti D (2018) The aerobic exercise training in hypertension: a matter of baking ingredients. J Hypertens 36(8):1651–1653.

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Feng M, Whitesall S, Zhang Y, Beibel M, D’Alecy L, DiPetrillo K (2008) Validation of volume-pressure recording tail-cuff blood pressure measurements. Am J Hypertens 21(12):1288–1291.

    Article  PubMed  Google Scholar 

  13. 13.

    Auclair C, Voisin E (1985) Nitroblue tetrazolium reduction. In: Greenvvald RA (ed) Handbook of methods for oxygen radical research. CRC Press, Boca Raton, pp 123–132.

    Google Scholar 

  14. 14.

    Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite and [15 N] nitrate in biological fluids. Anal Biochem 126:131–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358 doi: 0003-2697(79)90738-3

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    CAS  PubMed  Google Scholar 

  17. 17.

    Beutler E (1984) Superoxide dismutase. In: Beutler E (ed) Red cell metabolism. a manual of biochemical methods. Grune & Stratton: Philadelphia, pp 83–85

    Google Scholar 

  18. 18.

    Aebi H (1984) Catalase in vitro. Methods Enzymol. 105:121–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA (2004) American College of Sports Medicine. American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sports Exerc 36(3):533–553

    Article  PubMed  Google Scholar 

  20. 20.

    Libonati JR, Sabri A, Xiao C, MacDonnell SM, Renna BF (2011) Exercise training improves systolic function in hypertensive myocardium. J Appl Physiol 11(6):1637–1643.

    Article  CAS  Google Scholar 

  21. 21.

    Carneiro-Júnior MA, Quintão-Júnior JF, Drummond LR, Lavorato VN, Drummond FR, Amadeu MA (2014) Effect of exercise training on Ca2+ release units of left ventricular myocytes of spontaneously hypertensive rats. Braz J Med Biol Res 47(11):960–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Carneiro-Júnior MA, Quintão-Júnior JF, Drummond LR, Lavorato VN, Drummond FR, da Cunha DN (2013) The benefits of endurance training in cardiomyocyte function in hypertensive rats are reversed within four weeks of detraining. J Mol Cell Cardiol 57:119–128.

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Wang N, Liu Y, Ma Y, Wen D (2017) High-intensity interval versus moderate-intensity continuous training: superior metabolic benefits in diet-induced obesity mice. Life Sci 191:122–131.

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Pingitore A, Lima GPP, Mastorci F, Quinones A, Iervasi G, Vassalle C (2015) Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports. Nutrition 31(7–8):916–922.

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Aro CEP, Guzmán JAR, Muñoz MES, González BEV (2015) Effects of high intensity interval training versus moderate intensity continuous training on the reduction of oxidative stress in type 2 diabetic adult patients: CAT. Medwave 15(7):1–13.

    Article  Google Scholar 

  26. 26.

    Ramos JS, Dalleck LC, Tjonna AE, Beetham KS, Coombes JS (2015) The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: a systematic review and meta-analysis. Sports Med 45(5):679–692.

    Article  PubMed  Google Scholar 

  27. 27.

    Finkler M, Lichtenberg D, Pinchuk I (2014) The relationship between oxidative stress and exercise. J Basic Clin Physiol Pharmacol 25(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142:231–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Steinbacher P, Eckl P (2015) Impact of oxidative stress on exercising skeletal muscle. Biomolecules 5(2):356–377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Wewege M, van den Berg R, Ward RE, Keech A (2017) The effects of high-intensity interval training vs. moderate-intensity continuous training on body composition in overweight and obese adults: a systematic review and meta-analysis. Obes Rev 18(6):635–646.

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Covas MI, Elosua R, Fitó M, Alcántara M, Coca L, Marrugat J (2002) Relationship between physical activity and oxidative stress biomarkers in women. Med Sci Sports Exerc 34(5):814–819

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Criswell D, Powers S, Dodd S, Lawler J, Edwards W, Renshler K (1993) High intensity training-induced changes in skeletal muscle antioxidant enzyme activity. Med Sci Sports Exerc 25:1135–1140.

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Garciarena CD, Pinilla OA, Nolly MB, Laguens RP, Escudero EM, Cingolani HE (2009) Endurance training in the spontaneously hypertensive rat: conversion of pathological into physiological cardiac hypertrophy. Hypertension 53(4):708–714.

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Delwing-de Lima D, Ulbricht ASSF, Werlang-Coelho C, Delwing-Dal Magro D, Joaquim VHA, Salamaia EM, de Quevedo SR, Desordi L (2017) Effects of two aerobic exercise training protocols on parameters of oxidative stress in the blood and liver of obese rats. J Physiol Sci.

    Article  PubMed  Google Scholar 

  35. 35.

    Safarimosavi S, Mohebbi H, Rohani H (2018) High-intensity Interval vs. continuous endurance training: preventive effects on hormonal changes and physiological adaptations in prediabetes patients. J Strength Cond Res.

    Article  PubMed  Google Scholar 

Download references


This work was supported by Faculty of Medical Sciences, University of Kragujevac, Serbia (JP 01/15).

Author information



Corresponding author

Correspondence to Vladimir Lj. Jakovljevic.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jakovljevic, B., Nikolic Turnic, T., Jeremic, N. et al. The impact of aerobic and anaerobic training regimes on blood pressure in normotensive and hypertensive rats: focus on redox changes. Mol Cell Biochem 454, 111–121 (2019).

Download citation


  • Hypertension
  • HIIT
  • MIT
  • Heart
  • Redox status
  • Rat