Skip to main content
Log in

Tyrosine residues of bovine serum albumin play an important role in protecting SH-SY5Y cells against heme/H2O2/NO2-induced damage

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Serum albumin (SA) has been shown to act as a heme scavenger in hemolysis and can protect cell against the toxic effect of heme. However, the mechanism of SA in heme detoxification is not well understood. Interestingly, increasing studies indicate that heme/H2O2-dependent reaction is unlikely to be the principal cause of heme toxicity in excessive intravascular hemolysis conditions. Moreover, high levels of NO2 and NO3 were also found in patients with severe hemolytic diseases, which seem to involve in heme toxic effect as well. Therefore, we proposed that studying the protection mechanism of SA against the heme/H2O2/NO2-induced cytotoxicity may be more consistent with free heme-associated disorder pathologies. In this study, we tested the hypotheses that tyrosine residues of bovine serum albumin (BSA) play a prominent role in detoxifying heme in SH-SY5Y cells. Both BSA and tyrosine modified BSA (BSA-T) were used to explore this protective mechanism. Most of cellular injury (oxidative and nitrative damage) induced by heme/H2O2/NO2 were prevented by pretreatment with an equimolar concentration of BSA or BSA-T, and BSA was found more efficient than BSA-T. Meanwhile, BSA or BSA-T binding to heme is not accompanied by a decrease of heme’s peroxidase activity. Collectively, these data suggest that the protecting effect of BSA against heme-induced damage in the intravascular hemolysis diseases is not accomplished by preventing the primary reactivity of heme with H2O2, but by trapping radical through special residues such as tyrosine to render other important protein less damaged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goldstein L, Teng ZP, Zeserson E, Patel M, Regan RF (2003) Hemin induces an iron-dependent, oxidative injury to human neuron-like cells. J Neurosci Res 73:113–121. https://doi.org/10.1002/jnr.10633

    Article  CAS  PubMed  Google Scholar 

  2. Robinson SR, Dang TN, Dringen R, Bishop GM (2009) Hemin toxicity: a preventable source of brain damage following hemorrhagic stroke. Redox Rep 14:228–235. https://doi.org/10.1179/135100009X12525712409931

    Article  CAS  PubMed  Google Scholar 

  3. Zhao YL, Gao ZH, Li HL, Xu HB (2004) Hemin/nitrite/H2O2 induces brain homogenate oxidation and nitration: effects of some flavonoids. Biochim Biophys Acta 1675:105–112. https://doi.org/10.1016/j.bbagen.2004.08.011

    Article  CAS  PubMed  Google Scholar 

  4. Kumar S, Bandyopadhyay U (2005) Free heme toxicity and its detoxification systems in human. Toxicol Lett 157:175–188. https://doi.org/10.1016/j.toxlet.2005.03.004

    Article  CAS  PubMed  Google Scholar 

  5. Fanali G, di Masi A, Trezza V, Marino M, Fasano M, Ascenzi P (2012) Human serum albumin: from bench to bedside. Mol Aspects Med 33:209–290. https://doi.org/10.1016/j.mam.2011.12.002

    Article  CAS  PubMed  Google Scholar 

  6. Roumenina LT, Rayes J, Lacroix-Desmazes S, Dimitrov JD (2016) Heme: modulator of plasma systems in hemolytic diseases. Trends Mol Med 22:200–213. https://doi.org/10.1016/j.molmed.2016.01.004

    Article  CAS  PubMed  Google Scholar 

  7. Ascenzi P, Gianni S (2013) Functional role of transient conformations: rediscovering “chronosteric effects” thirty years later. IUBMB Life 65:836–844. https://doi.org/10.1002/iub.1208

    Article  CAS  PubMed  Google Scholar 

  8. Roche M, Rondeau P, Singh NR, Tarnus E, Bourdon E (2008) The antioxidant properties of serum albumin. FEBS Lett 582:1783–1787. https://doi.org/10.1016/j.febslet.2008.04.057

    Article  CAS  PubMed  Google Scholar 

  9. Belayev L, Obenaus A, Zhao W, Saul I, Busto R, Wu C, Vigdorchik A, Lin B, Ginsberg MD (2007) Experimental intracerebral hematoma in the rat: characterization by sequential magnetic resonance imaging, behavior, and histopathology. Effect of albumin therapy. Brain Res 1157: 146–155. https://doi.org/10.1016/j.brainres.2007.04.077

    Article  CAS  PubMed  Google Scholar 

  10. Monzani E, Bonafe B, Fallarini A, Redaelli C, Casella L, Minchiotti L, Galliano M (2001) Enzymatic properties of human hemalbumin. Biochim Biophys Acta 1547:302–312. https://doi.org/10.1016/S0167-4838(01)00192-3

    Article  CAS  PubMed  Google Scholar 

  11. Ascenzi P, Cao Y, di Masi A, Gullotta F, Sanctis GD, Fanali G, Fasano M, Coletta M (2010) Reductive nitrosylation of ferric human serum heme-albumin. FEBS J 277:2474–2485. https://doi.org/10.1111/j.1742-4658.2010.07662.x

    Article  CAS  PubMed  Google Scholar 

  12. Huang Y, Shuai YX, Li HL, Gao ZH (2014) Tyrosine residues play an important role in heme detoxification by serum albumin. Biochim Biophys Acta 1840:970–976. https://doi.org/10.1016/j.bbagen.2013.11.011

    Article  CAS  PubMed  Google Scholar 

  13. Zhao YL, Lu NH, Li HL, Gao ZH, Gong YF (2008) High glucose induced human umbilical vein endothelial cell injury: involvement of protein tyrosine nitration. Mol Cell Biochem 311:19–29. https://doi.org/10.1007/s11010-007-9688-y

    Article  CAS  PubMed  Google Scholar 

  14. Abello N, Kerstjens HAM, Postma DS, Bischoff R (2009) Protein tyrosine nitration: selectivity, physicochemical and biological consequences, denitration, and proteomics methods for the identification of tyrosine-nitrated proteins. J Proteome Res 8:3222–3238. https://doi.org/10.1021/pr900039c

    Article  CAS  PubMed  Google Scholar 

  15. Eiserich JP, Cross CE, Jones AD, Halliwell B, van der Vliet A (1996) Formation of nitrating and chlorinating species by reaction of nitrite with hypochlorous acid. A novel mechanism for nitric oxide-mediated protein modification. J Biol Chem 271:19199–19208. https://doi.org/10.1074/jbc.271.32.19199

    Article  CAS  PubMed  Google Scholar 

  16. Vinchi F, Franceschi LD, Ghigo A, Townes T, Cimino J, Silengo L, Hirsch E, Altruda F, Tolosano E (2013) Hemopexin therapy improves cardiovascular function by preventing heme-induced endothelial toxicity in mouse models of hemolytic diseases. Circulation 127:1317–1329. https://doi.org/10.1161/CIRCULATIONAHA.112.130179

    Article  CAS  PubMed  Google Scholar 

  17. Halliwell B, Gutteridge JM (1986) Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch Bochem Biophys 246:501–514. https://doi.org/10.1016/0003-9861(86)90305-X

    Article  CAS  Google Scholar 

  18. Himmelfarb J, McMonagle E (2001) Albumin is the major plasma protein target of oxidant stress in uremia. Kidney Int 60:358–363. https://doi.org/10.1046/j.1523-1755.2001.00807.x

    Article  CAS  PubMed  Google Scholar 

  19. Quinlan GJ, Margarson MP, Mumby S, Evans TW, Gutteridge JM (1998) Administration of albumin to patients with sepsis syndrome: a possible beneficial role in plasma thiol repletion. Clin Sci 95:459–465. https://doi.org/10.1042/cs0950459

    Article  CAS  PubMed  Google Scholar 

  20. Odhiambo A, Perlman DH, Huang H, Costello CE, Farber HW, Steinberg MH, McComb ME, Klings ES (2007) Identification of oxidative post-translational modification of serum albumin in patients with idiopathic pulmonary arterial hypertension and pulmonary hypertension of sickle cell anemia. Rapid Commun Mass Spectrom 21:2195–2203. https://doi.org/10.1002/rcm.3074

    Article  CAS  PubMed  Google Scholar 

  21. Huang Y, Yang Z, Xu H, Zhang PF, Gao ZF, Li HL (2017) Insulin enhances the peroxidase activity of heme by forming heme-insulin complex: relevance to type 2 diabetes mellitus. Int J Biol Macromol 102:1009–1015. https://doi.org/10.1016/j.ijbiomac.2017.04.113

    Article  CAS  PubMed  Google Scholar 

  22. Zunszain PA, Ghuman J, Komatsu T, Tsuchida E, Curry S (2003) Crystal structural analysis of human serum albumin complexed with hemin and fatty acid. BMC Struct Biol 3:1–9. https://doi.org/10.1186/1472-6807-3-6

    Article  Google Scholar 

  23. Yuan C, Li HL, Gao ZH (2012) Amyloid beta modulated the selectivity of heme-catalyzed protein tyrosine nitration: an alternative mechanism for selective protein nitration. J Biol Inorg Chem 17: 1083–1091. https://doi.org/10.1007/s00775-012-0922-z

    Article  CAS  PubMed  Google Scholar 

  24. Azari PR, Feeney RE (1961) The resistances of conalbumin and its iron complex to physical and chemical treatments. Arch Biochem Biophys 92:44–56. https://doi.org/10.1016/0003-9861(61)90216-8

    Article  CAS  PubMed  Google Scholar 

  25. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  26. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  27. Jia Y, Zhou J, Liu HM, Huang KX (2014) Effect of methionine sulfoxide reductase B1 (SelR) gene silencing on peroxynitrite-induced F-actin disruption in human lens epithelial cells. Biochem Biophys Res Commun 443:876–881

    Article  CAS  PubMed  Google Scholar 

  28. Scola G, Laliberte VLM, Kim HK, Pinguelo A, Salvador M, Young LT, Andreazza AC (2014) Vitis labrusca extract effects on cellular dynamics and redox modulations in a SH-SY5Y neuronal cell model: a similar role to lithium. Neurochem Int 79:12–19. https://doi.org/10.1016/j.neuint.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  29. Rost D, Welker A, Welker J, Millonig G, Berger I, Autschbach F, Schuppan D, Mueller S (2007) Liver-homing of purified glucose oxidase: a novel in vivo model of physiological hepatic oxidative stress (H2O2). J Hepatol 46:482–491. https://doi.org/10.1016/j.jhep.2006.09.025

    Article  CAS  PubMed  Google Scholar 

  30. Acharya MM, Lan ML, Kan VH, Patel NH, Giedzinski E, Tseng BP, Limoli CL (2010) Consequences of ionizing radiation-induced damage in human neural stem cells. Free Radic Biol Med 49:1846–1855. https://doi.org/10.1016/j.freeradbiomed.2010.08.021

    Article  CAS  PubMed  Google Scholar 

  31. Arora D, Hall S, Anoopkumar-Dukie S, Morrison R, McFarland A, Perkins AV, Davey AK, Grant GD (2018) Pyocyanin induces systemic oxidative stress, inflammation and behavioral changes in vivo. Toxicol Mech Method 28:410–414. https://doi.org/10.1080/15376516.2018.1429038

    Article  CAS  Google Scholar 

  32. Grinberg LN, O’Brien PJ, Hrkal Z (1999) The effects of heme-binding proteins on the peroxidative and catalatic activities of hemin. Free Radic Biol Med 27:214–219. https://doi.org/10.1016/S0891-5849(99)00082-9

    Article  CAS  PubMed  Google Scholar 

  33. Kamal JK, Behere DV (2002) Spectroscopic studies on human serum albumin and methemalbumin: optical, steady-state, and picosecond time-resolved fluorescence studies, and kinetics of substrate oxidation by methemalbumin. J Biol Inorg Chem 7:273–283. https://doi.org/10.1007/s007750100294

    Article  CAS  PubMed  Google Scholar 

  34. Balla J, Vercellotti GM, Jeney V, Yachie A, Varga Z, Jacob HS, Eaton JW, Ballai G (2007) Heme, heme oxygenase, and ferritin: how the vascular endothelium survives (and dies) in an iron-rich environment. Antioxid Redox Sign 9:2119–2137. https://doi.org/10.1089/ars.2007.1787

    Article  CAS  Google Scholar 

  35. Campolo N, Bartesaghi S, Radi R (2014) Metal-catalyzed protein tyrosine nitration in biological systems. Redox Rep 9:221–231. https://doi.org/10.1179/1351000214Y.0000000099

    Article  CAS  Google Scholar 

  36. Halliwell B (1997) What nitrates tyrosine? Is nitrotyrosine specific as a biomarker of peroxynitrite formation in vivo? FEBS Lett 411:157–160. https://doi.org/10.1016/S0014-5793(97)00469-9

    Article  CAS  PubMed  Google Scholar 

  37. Thomas DD, Espey MG, Vitek MP, Miranda KM, Wink DA (2002) Protein nitration is mediated by heme and free metals through Fenton-type chemistry: an alternative to the NO/O2 reaction. Proc Natl Acad Sci USA 99:12691–12696. https://doi.org/10.1073/pnas.202312699

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (Nos. 31570810 and 31770866), Natural Science Foundation of Hubei Scientific Committee (No. 2016CFA001), and the Fundamental Research Funds for the Central Universities of China (2017KFYXJJ167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailing Li.

Ethics declarations

Conflict of interest

The authors have no conflict to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Wu, J., Gao, Z. et al. Tyrosine residues of bovine serum albumin play an important role in protecting SH-SY5Y cells against heme/H2O2/NO2-induced damage. Mol Cell Biochem 454, 57–66 (2019). https://doi.org/10.1007/s11010-018-3452-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3452-3

Keywords

Navigation