Skip to main content
Log in

Maresin 1 attenuates pro-inflammatory reactions and ER stress in HUVECs via PPARα-mediated pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The current study was designed to investigate the therapeutic effects of Maresin 1 (MAR1) on atherosclerotic response. Human monocytes THP-1 and human umbilical vein endothelial cells (HUVECs) were used to investigate the effects of MAR1 on lipopolysaccharide (LPS)-induced inflammation and apoptosis. In this study, we found that MAR1 induces peroxisome proliferator-activated receptor alpha (PPARα) expression. We also demonstrated that MAR1 suppresses atherosclerotic reactions caused by LPS treatment via a PPARα-dependent pathway. MAR1 treatment inhibited LPS-induced phosphorylation of nuclear factor kappa B (NF-κB) and secretion of pro-inflammatory cytokines in HUVECs and THP-1 cells. In HUVEC cells, expression of adhesion molecules and LPS-stimulated adhesion of THP-1 cells to the endothelium were significantly decreased after MAR1 treatment. Furthermore, LPS-induced endoplasmic reticulum (ER) stress and cell apoptosis was significantly decreased after MAR1 treatment of HUVECs. MAR1 also led to a dose-dependent increase in oxygen-regulated protein 150 (ORP150) expression which is responsible for the inhibition of ER stress. Notably, all of the pro-atherosclerotic effects were completely abrogated by treatment with small interfering (si) RNA targeting PPARα. In conclusion, MAR1 ameliorates LPS-induced atherosclerotic reactions via PPARα-mediated suppression of inflammation and ER stress.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

IL-6:

Interleukin 6

PPARα:

Peroxisome proliferator-activated receptor alpha

ORP150:

Oxygen-regulated protein 150

ER:

Endoplasmic reticulum

HFD:

High fat diet

UPR:

Unfolded protein response

CHOP:

C/EBP homologous protein

DHA:

Docosahexaenoic acid

MAR1:

Maresin 1

siRNA:

Small interfering RNA

References

  1. Libby P, Hansson GK (2015) Inflammation and immunity in diseases of the arterial tree: players and layers. Circ Res 116:307–311. https://doi.org/10.1161/CIRCRESAHA.116.301313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER 3rd, Moy CS, Mussolino ME, Neumar RW, Nichol G, Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, American Heart Association Statistics C and Stroke Statistics S (2014) Executive summary: heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation 129:399–410. https://doi.org/10.1161/01.cir.0000442015.53336.12

    Article  PubMed  Google Scholar 

  3. Devchand PR, Keller H, Peters JM, Vazquez M, Gonzalez FJ, Wahli W (1996) The PPARalpha-leukotriene B4 pathway to inflammation control. Nature 384:39–43. https://doi.org/10.1038/384039a0

    Article  CAS  PubMed  Google Scholar 

  4. Ziouzenkova O, Perrey S, Asatryan L, Hwang J, MacNaul KL, Moller DE, Rader DJ, Sevanian A, Zechner R, Hoefler G, Plutzky J (2003) Lipolysis of triglyceride-rich lipoproteins generates PPAR ligands: evidence for an antiinflammatory role for lipoprotein lipase. Proc Natl Acad Sci USA 100:2730–2735. https://doi.org/10.1073/pnas.0538015100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Han CY, Chiba T, Campbell JS, Fausto N, Chaisson M, Orasanu G, Plutzky J, Chait A (2006) Reciprocal and coordinate regulation of serum amyloid A versus apolipoprotein A-I and paraoxonase-1 by inflammation in murine hepatocytes. Arterioscler Thromb Vasc Biol 26:1806–1813. https://doi.org/10.1161/01.ATV.0000227472.70734.ad

    Article  CAS  PubMed  Google Scholar 

  6. Minamino T, Komuro I, Kitakaze M (2010) Endoplasmic reticulum stress as a therapeutic target in cardiovascular disease. Circ Res 107:1071–1082. https://doi.org/10.1161/CIRCRESAHA.110.227819

    Article  CAS  PubMed  Google Scholar 

  7. Tabas I (2010) The role of endoplasmic reticulum stress in the progression of atherosclerosis. Circ Res 107:839–850. https://doi.org/10.1161/CIRCRESAHA.110.224766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Muller C, Bandemer J, Vindis C, Camare C, Mucher E, Gueraud F, Larroque-Cardoso P, Bernis C, Auge N, Salvayre R, Negre-Salvayre A (2013) Protein disulfide isomerase modification and inhibition contribute to ER stress and apoptosis induced by oxidized low density lipoproteins. Antioxid Redox Signal 18:731–742. https://doi.org/10.1089/ars.2012.4577

    Article  CAS  PubMed  Google Scholar 

  9. Zhou J, Lhotak S, Hilditch BA, Austin RC (2005) Activation of the unfolded protein response occurs at all stages of atherosclerotic lesion development in apolipoprotein E-deficient mice. Circulation 111:1814–1821. https://doi.org/10.1161/01.CIR.0000160864.31351.C1

    Article  CAS  PubMed  Google Scholar 

  10. Erbay E, Babaev VR, Mayers JR, Makowski L, Charles KN, Snitow ME, Fazio S, Wiest MM, Watkins SM, Linton MF, Hotamisligil GS (2009) Reducing endoplasmic reticulum stress through a macrophage lipid chaperone alleviates atherosclerosis. Nat Med 15:1383–1391. https://doi.org/10.1038/nm.2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dong Y, Zhang M, Liang B, Xie Z, Zhao Z, Asfa S, Choi HC, Zou MH (2010) Reduction of AMP-activated protein kinase alpha2 increases endoplasmic reticulum stress and atherosclerosis in vivo. Circulation 121:792–803. https://doi.org/10.1161/CIRCULATIONAHA.109.900928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kuwabara K, Matsumoto M, Ikeda J, Hori O, Ogawa S, Maeda Y, Kitagawa K, Imuta N, Kinoshita T, Stern DM, Yanagi H, Kamada T (1996) Purification and characterization of a novel stress protein, the 150-kDa oxygen-regulated protein (ORP150), from cultured rat astrocytes and its expression in ischemic mouse brain. J Biol Chem 271:5025–5032

    Article  CAS  PubMed  Google Scholar 

  13. Inagi R, Nangaku M, Onogi H, Ueyama H, Kitao Y, Nakazato K, Ogawa S, Kurokawa K, Couser WG, Miyata T (2005) Involvement of endoplasmic reticulum (ER) stress in podocyte injury induced by excessive protein accumulation. Kidney Int 68:2639–2650. https://doi.org/10.1111/j.1523-1755.2005.00736.x

    Article  CAS  PubMed  Google Scholar 

  14. Ozawa K, Kuwabara K, Tamatani M, Takatsuji K, Tsukamoto Y, Kaneda S, Yanagi H, Stern DM, Eguchi Y, Tsujimoto Y, Ogawa S, Tohyama M (1999) 150-kDa oxygen-regulated protein (ORP150) suppresses hypoxia-induced apoptotic cell death. J Biol Chem 274:6397–6404

    Article  CAS  PubMed  Google Scholar 

  15. Sanson M, Ingueneau C, Vindis C, Thiers JC, Glock Y, Rousseau H, Sawa Y, Bando Y, Mallat Z, Salvayre R, Negre-Salvayre A (2008) Oxygen-regulated protein-150 prevents calcium homeostasis deregulation and apoptosis induced by oxidized LDL in vascular cells. Cell Death Differ 15:1255–1265. https://doi.org/10.1038/cdd.2008.36

    Article  CAS  PubMed  Google Scholar 

  16. Sanson M, Auge N, Vindis C, Muller C, Bando Y, Thiers JC, Marachet MA, Zarkovic K, Sawa Y, Salvayre R, Negre-Salvayre A (2009) Oxidized low-density lipoproteins trigger endoplasmic reticulum stress in vascular cells: prevention by oxygen-regulated protein 150 expression. Circ Res 104:328–336. https://doi.org/10.1161/CIRCRESAHA.108.183749

    Article  CAS  PubMed  Google Scholar 

  17. Dery MA, LeBlanc AC (2017) Luman contributes to brefeldin A-induced prion protein gene expression by interacting with the ERSE26 element. Sci Rep 7:42285. https://doi.org/10.1038/srep42285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gareus R, Kotsaki E, Xanthoulea S, van der Made I, Gijbels MJ, Kardakaris R, Polykratis A, Kollias G, de Winther MP, Pasparakis M (2008) Endothelial cell-specific NF-kappaB inhibition protects mice from atherosclerosis. Cell Metab 8:372–383. https://doi.org/10.1016/j.cmet.2008.08.016

    Article  CAS  PubMed  Google Scholar 

  19. Hotamisligil GS (2010) Endoplasmic reticulum stress and atherosclerosis. Nat Med 16:396–399. https://doi.org/10.1038/nm0410-396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Harrison D, Griendling KK, Landmesser U, Hornig B, Drexler H (2003) Role of oxidative stress in atherosclerosis. Am J Cardiol 91:7A–11A

    Article  CAS  PubMed  Google Scholar 

  21. Chen WL, Chen YL, Chiang YM, Wang SG, Lee HM (2012) Fenofibrate lowers lipid accumulation in myotubes by modulating the PPARalpha/AMPK/FoxO1/ATGL pathway. Biochem Pharmacol 84:522–531. https://doi.org/10.1016/j.bcp.2012.05.022

    Article  CAS  PubMed  Google Scholar 

  22. Wang Y, Wu Z, Li D, Wang D, Wang X, Feng X, Xia M (2011) Involvement of oxygen-regulated protein 150 in AMP-activated protein kinase-mediated alleviation of lipid-induced endoplasmic reticulum stress. J Biol Chem 286:11119–11131. https://doi.org/10.1074/jbc.M110.203323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Calder PC (2015) Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim Biophys Acta 1851:469–484. https://doi.org/10.1016/j.bbalip.2014.08.010

    Article  CAS  PubMed  Google Scholar 

  24. Yates CM, Calder PC, Ed Rainger G (2014) Pharmacology and therapeutics of omega-3 polyunsaturated fatty acids in chronic inflammatory disease. Pharmacol Ther 141:272–282. https://doi.org/10.1016/j.pharmthera.2013.10.010

    Article  CAS  PubMed  Google Scholar 

  25. Welty FK, Alfaddagh A, Elajami TK (2016) Targeting inflammation in metabolic syndrome. Transl Res 167:257–280. https://doi.org/10.1016/j.trsl.2015.06.017

    Article  CAS  PubMed  Google Scholar 

  26. Masoodi M, Kuda O, Rossmeisl M, Flachs P, Kopecky J (2015) Lipid signaling in adipose tissue: connecting inflammation and metabolism. Biochim Biophys Acta 1851:503–518. https://doi.org/10.1016/j.bbalip.2014.09.023

    Article  CAS  PubMed  Google Scholar 

  27. Lopategi A, Lopez-Vicario C, Alcaraz-Quiles J, Garcia-Alonso V, Rius B, Titos E, Claria J (2016) Role of bioactive lipid mediators in obese adipose tissue inflammation and endocrine dysfunction. Mol Cell Endocrinol 419:44–59. https://doi.org/10.1016/j.mce.2015.09.033

    Article  CAS  PubMed  Google Scholar 

  28. Neuhofer A, Zeyda M, Mascher D, Itariu BK, Murano I, Leitner L, Hochbrugger EE, Fraisl P, Cinti S, Serhan CN, Stulnig TM (2013) Impaired local production of proresolving lipid mediators in obesity and 17-HDHA as a potential treatment for obesity-associated inflammation. Diabetes 62:1945–1956. https://doi.org/10.2337/db12-0828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Claria J, Nguyen BT, Madenci AL, Ozaki CK, Serhan CN (2013) Diversity of lipid mediators in human adipose tissue depots. Am J Physiol Cell Physiol 304:C1141–C1149. https://doi.org/10.1152/ajpcell.00351.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chang CL, Deckelbaum RJ (2013) Omega-3 fatty acids: mechanisms underlying ‘protective effects’ in atherosclerosis. Curr Opin Lipidol 24:345–350. https://doi.org/10.1097/MOL.0b013e3283616364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Viola JR, Lemnitzer P, Jansen Y, Csaba G, Winter C, Neideck C, Silvestre-Roig C, Dittmar G, Doring Y, Drechsler M, Weber C, Zimmer R, Cenac N, Soehnlein O (2016) Resolving lipid mediators maresin 1 and resolvin D2 prevent atheroprogression in mice. Circ Res 119:1030–1038. https://doi.org/10.1161/CIRCRESAHA.116.309492

    Article  CAS  PubMed  Google Scholar 

  32. Serhan CN, Yang R, Martinod K, Kasuga K, Pillai PS, Porter TF, Oh SF, Spite M (2009) Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions. J Exp Med 206:15–23. https://doi.org/10.1084/jem.20081880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Marcon R, Bento AF, Dutra RC, Bicca MA, Leite DF, Calixto JB (2013) Maresin 1, a proresolving lipid mediator derived from omega-3 polyunsaturated fatty acids, exerts protective actions in murine models of colitis. J Immunol 191:4288–4298. https://doi.org/10.4049/jimmunol.1202743

    Article  CAS  PubMed  Google Scholar 

  34. Miyahara T, Runge S, Chatterjee A, Chen M, Mottola G, Fitzgerald JM, Serhan CN, Conte MS (2013) D-series resolvin attenuates vascular smooth muscle cell activation and neointimal hyperplasia following vascular injury. FASEB J 27:2220–2232. https://doi.org/10.1096/fj.12-225615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chatterjee A, Sharma A, Chen M, Toy R, Mottola G, Conte MS (2014) The pro-resolving lipid mediator maresin 1 (MaR1) attenuates inflammatory signaling pathways in vascular smooth muscle and endothelial cells. PLoS One 9:e113480. https://doi.org/10.1371/journal.pone.0113480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Merched AJ, Ko K, Gotlinger KH, Serhan CN, Chan L (2008) Atherosclerosis: evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators. FASEB J 22:3595–3606. https://doi.org/10.1096/fj.08-112201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Erkkila AT, Matthan NR, Herrington DM, Lichtenstein AH (2006) Higher plasma docosahexaenoic acid is associated with reduced progression of coronary atherosclerosis in women with CAD. J Lipid Res 47:2814–2819. https://doi.org/10.1194/jlr.P600005-JLR200

    Article  CAS  PubMed  Google Scholar 

  38. Li R, Wang Y, Ma Z, Ma M, Wang D, Xie G, Yin Y, Zhang P, Tao K (2016) Maresin 1 Mitigates Inflammatory Response and Protects Mice from Sepsis. Mediators Inflamm 2016:3798465. https://doi.org/10.1155/2016/3798465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zuniga J, Cancino M, Medina F, Varela P, Vargas R, Tapia G, Videla LA, Fernandez V (2011) N-3 PUFA supplementation triggers PPAR-alpha activation and PPAR-alpha/NF-kappaB interaction: anti-inflammatory implications in liver ischemia-reperfusion injury. PLoS ONE 6:e28502. https://doi.org/10.1371/journal.pone.0028502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sun Q, Wu Y, Zhao F, Wang J (2017) Maresin 1 ameliorates lung ischemia/reperfusion injury by suppressing oxidative stress via activation of the Nrf-2-mediated HO-1 signaling pathway. Oxid Med Cell Longev 2017:9634803. https://doi.org/10.1155/2017/9634803

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rius B, Duran-Guell M, Flores-Costa R, Lopez-Vicario C, Lopategi A, Alcaraz-Quiles J, Casulleras M, Lozano JJ, Titos E, Claria J (2017) The specialized pro-resolving lipid mediator maresin 1 protects hepatocytes from lipotoxic and hypoxia-induced endoplasmic reticulum stress. FASEB J. https://doi.org/10.1096/fj.201700394R

    Article  PubMed  Google Scholar 

  42. Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143

    Article  CAS  PubMed  Google Scholar 

  43. Bonomini F, Tengattini S, Fabiano A, Bianchi R, Rezzani R (2008) Atherosclerosis and oxidative stress. Histol Histopathol 23:381–390. https://doi.org/10.14670/HH-23.381

    Article  CAS  PubMed  Google Scholar 

  44. Menghini R, Casagrande V, Marino A, Marchetti V, Cardellini M, Stoehr R, Rizza S, Martelli E, Greco S, Mauriello A, Ippoliti A, Martelli F, Lauro R, Federici M (2014) MiR-216a: a link between endothelial dysfunction and autophagy. Cell Death Dis 5:e1029. https://doi.org/10.1038/cddis.2013.556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mallat Z, Tedgui A (2000) Apoptosis in the vasculature: mechanisms and functional importance. Br J Pharmacol 130:947–962. https://doi.org/10.1038/sj.bjp.0703407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Karin M (1999) The beginning of the end: IkappaB kinase (IKK) and NF-kappaB activation. J Biol Chem 274:27339–27342

    Article  CAS  PubMed  Google Scholar 

  47. Collins T, Read MA, Neish AS, Whitley MZ, Thanos D, Maniatis T (1995) Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa B and cytokine-inducible enhancers. FASEB J 9:899–909

    Article  CAS  PubMed  Google Scholar 

  48. Schindler U, Baichwal VR (1994) Three NF-kappa B binding sites in the human E-selectin gene required for maximal tumor necrosis factor alpha-induced expression. Mol Cell Biol 14:5820–5831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bando Y, Ogawa S, Yamauchi A, Kuwabara K, Ozawa K, Hori O, Yanagi H, Tamatani M, Tohyama M (2000) 150-kDa oxygen-regulated protein (ORP150) functions as a novel molecular chaperone in MDCK cells. Am J Physiol Cell Physiol 278:C1172–C1182. https://doi.org/10.1152/ajpcell.2000.278.6.C1172

    Article  CAS  PubMed  Google Scholar 

  50. Tsukamoto Y, Kuwabara K, Hirota S, Ikeda J, Stern D, Yanagi H, Matsumoto M, Ogawa S, Kitamura Y (1996) 150-kD oxygen-regulated protein is expressed in human atherosclerotic plaques and allows mononuclear phagocytes to withstand cellular stress on exposure to hypoxia and modified low density lipoprotein. J Clin Invest 98:1930–1941. https://doi.org/10.1172/JCI118994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nakamura T, Sakamoto K (2008) Forkhead transcription factor FOXO subfamily is essential for reactive oxygen species-induced apoptosis. Mol Cell Endocrinol 281:47–55. https://doi.org/10.1016/j.mce.2007.10.007

    Article  CAS  PubMed  Google Scholar 

  52. Alasiri G, Fan LY, Zona S, Goldsbrough IG, Ke HL, Auner HW, Lam EW (2017) ER stress and cancer: the FOXO forkhead transcription factor link. Mol Cell Endocrinol. https://doi.org/10.1016/j.mce.2017.05.027

    Article  PubMed  Google Scholar 

  53. Accili D, Arden KC (2004) FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117:421–426

    Article  CAS  PubMed  Google Scholar 

  54. Matsuzaki H, Daitoku H, Hatta M, Aoyama H, Yoshimochi K, Fukamizu A (2005) Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc Natl Acad Sci USA 102:11278–11283. https://doi.org/10.1073/pnas.0502738102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Frescas D, Valenti L, Accili D (2005) Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J Biol Chem 280:20589–20595. https://doi.org/10.1074/jbc.M412357200

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Contract grant sponsor: This study was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Korea government Ministry of Education (2017R1D1A1B03028892) and the Ministry of Science, ICT, and Future Planning (2016R1C1B2012674).

Author information

Authors and Affiliations

Authors

Contributions

TWJ, TSL, and JHJ: substantial contribution to the conception and design; TWJ, HSP, and GHC: acquisition of data, or analysis and interpretation of data; TWJ, DHK, and DSK: drafting or revising the article. All authors approved the final version of the manuscript. TWJ, TSL, and JHJ are responsible for the integrity of the work as a whole.

Corresponding authors

Correspondence to Taeseung Lee or Ji Hoon Jeong.

Ethics declarations

Conflict of interest

The authors confirm that they have no conflict of interest with the content of this article.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

MAR1 does not affect LPS-induced hydrogen peroxide production in HUVECs. Cells were treated with various concentrations of MAR1 (0, 5, or 10 μM) or LPS (200 ng/ml). After 24 h, the levels of hydrogen peroxide production were determined by colorimetric enzyme assay in HUVECs. Student’s t test was used for statistical analysis. Below is the link to the electronic supplementary material.

Supplementary material 1 (TIF 35 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, T.W., Park, H.S., Choi, G.H. et al. Maresin 1 attenuates pro-inflammatory reactions and ER stress in HUVECs via PPARα-mediated pathway. Mol Cell Biochem 448, 335–347 (2018). https://doi.org/10.1007/s11010-018-3392-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3392-y

Keywords

Navigation