Skip to main content

Label-free quantitative proteomics analysis reveals distinct molecular characteristics in endocardial endothelium


Endocardial endothelium, which lines the chambers of the heart, is distinct in its origin, structure, and function. Characterization studies using genomics and proteomics have reported molecular signatures supporting the structural and functional heterogeneity of various endothelial cells. However, though functionally very important, no studies at protein level have been conducted so far characterizing endocardial endothelium. In this study, we used endothelial cells from pig heart to investigate if endocardial endothelial cells are distinct at the proteome level. Using a high-throughput liquid chromatography-tandem mass spectrometry for proteome profiling and expression, we identified sets of proteins that belong to specific biological processes and metabolic pathways in endocardial endothelial cells supporting its specific structural and functional roles. The study also identified several transcription factors and cell surface markers, which may have roles in the specificity of endocardial endothelium. The detection of sets proteins preferentially expressed in endocardial endothelium offers new insights into its role in the regulation of cardiac function. Data are made available through ProteomeXchange with identifier PXD009194.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. Yano K, Gale D, Massberg S et al (2007) Phenotypic heterogeneity is an evolutionarily conserved feature of the endothelium. Blood 109:613–615.

    Article  CAS  PubMed  Google Scholar 

  2. Ishii Y, Langberg J, Rosborough K, Mikawa T (2008) Endothelial cell lineages of the heart. Cell Tissue Res 335:67–73.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Misfeldt AM, Boyle SC, Tompkins KL et al (2009) Endocardial cells are a distinct endothelial lineage derived from Flk1+ multipotent cardiovascular progenitors. Dev Biol 333:78–89.

    Article  CAS  PubMed  Google Scholar 

  4. Brutsaert DL, Meulemans a L, Sipido KR, Sys SU (1988) Effects of damaging the endocardial surface on the mechanical performance of isolated cardiac muscle. Circ Res 62:358–366.

    Article  CAS  PubMed  Google Scholar 

  5. Bruneel A, Labas V, Mailloux A et al (2003) Proteomic study of human umbilical vein endothelial cells in culture. Proteomics 3:714–723.

    Article  CAS  PubMed  Google Scholar 

  6. Liu Z, Xu B, Nameta M et al (2013) Profiling of kidney vascular endothelial cell plasma membrane proteins by liquid chromatography-tandem mass spectrometry. Clin Exp Nephrol 17:327–337.

    Article  CAS  PubMed  Google Scholar 

  7. Zieger MA, Gupta MP, Wang M (2011) Proteomic analysis of endothelial cold-adaptation. BMC Genom 12:630.

    Article  CAS  Google Scholar 

  8. Smith JA, Radomski MW, Schulz R et al (1993) Porcine ventricular endocardial cells in culture express the inducible form of nitric oxide synthase. Br J Pharmacol 108:1107–1110.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Ando H, Kubin T, Schaper W, Schaper J (1999) Cardiac microvascular endothelial cells express alpha-smooth muscle actin and show low NOS III activity. Am J Physiol 276:H1755–H1768

    CAS  PubMed  Google Scholar 

  10. Kumar V, Aneesh kumar A, Kshemada K et al (2017) Amalaki rasayana, a traditional Indian drug enhances cardiac mitochondrial and contractile functions and improves cardiac function in rats with hypertrophy. Sci Rep 7:8588.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Xia J, Wishart DS (2011) Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat Protoc 6:743–760.

    Article  CAS  PubMed  Google Scholar 

  12. Mudunuri U, Che A, Yi M, Stephens RM (2009) bioDBnet: the biological database network. Bioinformatics 25:555–556.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Fabregat A, Sidiropoulos K, Garapati P et al (2016) The reactome pathway knowledgebase. Nucleic Acids Res 44:D481–D487.

    Article  CAS  Google Scholar 

  14. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550.

    Article  CAS  PubMed  Google Scholar 

  15. Brutsaert DL, Fransen P, Andries LJ et al (1998) Cardiac endothelium and myocardial function. Cardiovasc Res 38:281–290

    Article  CAS  PubMed  Google Scholar 

  16. Kuruvilla L, Kartha CC (2003) Molecular mechanisms in endothelial regulation of cardiac function. Mol Cell Biochem 253:113–123

    Article  CAS  PubMed  Google Scholar 

  17. Schoner A, Tyrrell C, Wu M et al (2015) Endocardial endothelial dysfunction progressively disrupts initially anti then pro-thrombotic pathways in heart failure mice. PLoS ONE.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Rahman A, Swärd K (2009) The role of caveolin-1 in cardiovascular regulation. Acta Physiol 195:231–245

    Article  CAS  Google Scholar 

  19. McCormick ME, Manduchi E, Witschey WRT et al (2017) Spatial phenotyping of the endocardial endothelium as a function of intracardiac hemodynamic shear stress. J Biomech 50:11–19.

    Article  PubMed  Google Scholar 

  20. Sun J, Liao JK (2002) Functional interaction of endothelial nitric oxide synthase with a voltage-dependent anion channel. Proc Natl Acad Sci USA 99:13108–13113.

    Article  CAS  PubMed  Google Scholar 

  21. McCormick ME, Manduchi E, Witschey WRT et al (2016) Integrated regional cardiac hemodynamic imaging and RNA sequencing reveal corresponding heterogeneity of ventricular wall shear stress and endocardial transcriptome. J Am Heart Assoc.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kazmi RS, Boyce S, Lwaleed BA (2015) Homeostasis of hemostasis: the role of endothelium. Semin Thromb Hemost 41:549–555.

    Article  CAS  PubMed  Google Scholar 

  23. Wu B, Zhang Z, Lui W et al (2012) Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell 151:1083–1096.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Pimanda JE, Ottersbach K, Knezevic K et al (2007) Gata2, Fli1, and Scl form a recursively wired gene-regulatory circuit during early hematopoietic development. Proc Natl Acad Sci USA 104:17692–17697.

    Article  PubMed  Google Scholar 

  25. De Val S, Chi NC, Meadows SM et al (2008) Combinatorial regulation of endothelial gene expression by Ets and Forkhead transcription factors. Cell 135:1053–1064.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Kapur NK, Morine KJ, Letarte M (2013) Endoglin: a critical mediator of cardiovascular health. Vasc Health Risk Manag 9:195–206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Marinaş ID, Marinaş R, Pirici I, Mogoantǎ L (2012) Vascular and mesenchymal factors during heart development: a chronological study. Rom J Morphol Embryol 53:135–142

    PubMed  Google Scholar 

  28. Garlanda C, Dejana E (1997) Heterogeneity of endothelial cells. Specific markers. Arter Thromb Vasc Biol 17:1193–1202.

    Article  CAS  Google Scholar 

  29. Nakano A, Nakano H, Smith KA, Palpant NJ (2016) The developmental origins and lineage contributions of endocardial endothelium. Biochim Biophys Acta Mol Cell Res 1863:1937–1947

    Article  CAS  Google Scholar 

  30. Noireaud J, Andriantsitohaina R (2014) Recent insights in the paracrine modulation of cardiomyocyte contractility by cardiac endothelial cells. Biomed Res Int.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Brutsaert DL (2003) Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev 83:59–115.

    Article  CAS  PubMed  Google Scholar 

Download references


This work was supported by the intramural funding of Rajiv Gandhi Centre for Biotechnology, which in turn is funded by Department of Biotechnology, Ministry of Science and Technology, Government of India.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Abdul Jaleel.

Ethics declarations

Conflict of interest

The authors declare that they have no financial or commercial conflicts interests.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26 KB)

Supplementary material 2 (DOCX 22 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jaleel, A., Aneesh Kumar, A., Ajith Kumar, G.S. et al. Label-free quantitative proteomics analysis reveals distinct molecular characteristics in endocardial endothelium. Mol Cell Biochem 451, 1–10 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Bioinformatics
  • Endocardial endothelium
  • Label-free quantitative proteomics
  • Transcription Factors
  • Aortic endothelial cells