Skip to main content
Log in

The role of mitochondrial DNA damage at skeletal muscle oxidative stress on the development of type 2 diabetes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Reduced cellular response to insulin in skeletal muscle is one of the major components of the development of type 2 diabetes (T2D). Mitochondrial dysfunction involves in the accumulation of toxic reactive oxygen species (ROS) that leads to insulin resistance. The aim of this study was to verify the involvement of mitochondrial DNA damage at ROS generation in skeletal muscle during development of T2D. Wistar rats were fed a diet containing 60% fat over 8 weeks and at day 14 a single injection of STZ (25 mg/kg) was administered (T2D-induced). Control rats received standard food and an injection of citrate buffer. Blood and soleus muscle were collected. Abdominal fat was quantified as well as glucose, triglyceride, LDL, HDL, and total cholesterol in plasma and mtDNA copy number, cytochrome b (cytb) mRNA, 8-hydroxyguanosine, and 8-isoprostane (a marker of ROS) in soleus muscle. T2D-induced animal presented similar characteristics to humans that develop T2D such as changes in blood glucose, abdominal fat, LDL, HDL and cholesterol total. In soleus muscle 8-isoprostane, mtDNA copy number and 8-hydroxyguanosine were increased, while cytb mRNA was decreased in T2D. Our results suggest that in the development of T2D, when risks factors of T2D are present, intracellular oxidative stress increases in skeletal muscle and is associated with a decrease in cytb transcription. To overcome this process mtDNA increased but due to the proximity of ROS generation, mtDNA remains damaged by oxidation leading to an increase in ROS in a vicious cycle accounting to the development of insulin resistance and further T2D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Connor T, Martin SD, Howlett KF, McGee SL (2015) Metabolic remodelling in obesity and type 2 diabetes: pathological or protective mechanisms in response to nutrient excess? Clin Exp Pharmacol Physiol 42(1):109–115. https://doi.org/10.1111/1440-1681.12315

    Article  CAS  PubMed  Google Scholar 

  2. Santos JM, Benite-Ribeiro SA, Queiroz G, Duarte JA (2014) The interrelation between aPKC and glucose uptake in the skeletal muscle during contraction and insulin stimulation. Cell Biochem Funct 32(8):621–624. https://doi.org/10.1002/cbf.3081

    Article  CAS  PubMed  Google Scholar 

  3. Dos Santos JM, Moreli ML, Tewari S, Benite-Ribeiro SA (2015) The effect of exercise on skeletal muscle glucose uptake in type 2 diabetes: an epigenetic perspective. Metabolism 12:1619–1628. https://doi.org/10.1016/j.metabol.2015.09.013

    Article  CAS  Google Scholar 

  4. Hesselink MK, Schrauwen-Hinderling V, Schrauwen P (2016) Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nat Rev Endocrinol 11:633–645. https://doi.org/10.1038/nrendo.2016.104

    Article  CAS  Google Scholar 

  5. Nakanishi S, Suzuki G, Kusunoki Y, Yamane K, Egusa G, Kohno N (2004) Increasing of oxidative stress from mitochondria in type 2 diabetic patients. Diabetes Metab Res Rev 20(5):399–404

    Article  CAS  PubMed  Google Scholar 

  6. Rösen P, Osmers A (2006) Oxidative stress in young Zucker rats with impaired glucose tolerance is diminished by acarbose. Horm Metab Res 38(9):575–586

    Article  PubMed  Google Scholar 

  7. Edwards JL, Quattrini A, Lentz SI, Figueroa-Romero C, Cerri F, Backus C, Hong Y, Feldman EL (2010) Diabetes regulates mitochondrial biogenesis and fission in mouse neurons. Diabetologia 53(1):160–169. https://doi.org/10.1007/s00125-009-1553-y

    Article  CAS  PubMed  Google Scholar 

  8. Santos JM, Tewari S, Kowluru RA (2012) A compensatory mechanism protects retinal mitochondria from initial insult in diabetic retinopathy. Free Radic Biol Med 1;53(9):1729–1737. https://doi.org/10.1016/j.freeradbiomed.2012.08.588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Madsen-Bouterse SA, Mohammad G, Kanwar M, Kowluru RA (2010) Role of mitochondrial DNA damage in the development of diabetic retinopathy, and the metabolic memory phenomenon associated with its progression. Antioxid Redox Signal 13(6):797–805. https://doi.org/10.1089/ars.2009.2932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. dos Santos JM, Benite-Ribeiro SA, Queiroz G, Duarte JA (2012) The effect of age on glucose uptake and GLUT1 and GLUT4 expression in rat skeletal muscle. Cell Biochem Funct 30(3):191–197. https://doi.org/10.1002/cbf.1834

    Article  CAS  PubMed  Google Scholar 

  11. Santos JM, Ribeiro SB, Gaya AR, Appell HJ, Duarte JA (2008) Skeletal muscle pathways of contraction-enhanced glucose uptake. Int J Sports Med 29(10):785–794. https://doi.org/10.1055/s-2008-1038404

    Article  CAS  PubMed  Google Scholar 

  12. Alshehri AM (2010) Metabolic syndrome and cardiovascular risk. J Fam Commun Med 17(2):73–78. https://doi.org/10.4103/1319-1683.71987

    Article  Google Scholar 

  13. Klop B, Elte JWF, Castro Cabezas M (2013) Dyslipidemia in obesity: mechanisms and potential targets. Nutrients 5(4):1218–1240. https://doi.org/10.3390/nu5041218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Benite-Ribeiro SA, Santos JM, Duarte JA (2014) Moderate physical exercise attenuates the alterations of feeding behaviour induced by social stress in female rats. Cell Biochem Funct 32(2):142–149. https://doi.org/10.1002/cbf.2984

    Article  CAS  PubMed  Google Scholar 

  15. Mansor LS, Gonzalez ER, Cole MA, Tyler DJ, Beeson JH, Clarke K, Carr CA, Heather LC (2013) Cardiac metabolism in a new rat model of type 2 diabetes using high-fat diet with low dose streptozotocin. Cardiovasc Diabetol 12:136. https://doi.org/10.1186/1475-2840-12-136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sahin K, Onderci M, Tuzcu M, Ustundag B, Cikim G, Ozercan IH, Sriramoju V, Juturu V, Komorowski JR (2007) Effect of chromium on carbohydrate and lipid metabolism in a rat model of type 2 diabetes mellitus: the fat-fed, streptozotocin-treated rat. Metabolism 56(9):1233–1240

    Article  CAS  PubMed  Google Scholar 

  17. Skovsø S (2014) Modeling type 2 diabetes in rats using high fat diet and streptozotocin. J Diabetes Investig 5(4):349–358. https://doi.org/10.1111/jdi.12235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ailanen L, Ruohonen ST, Vähätalo LH, Tuomainen K, Eerola K, Salomäki-Myftari H, Röyttä M, Laiho A, Ahotupa M, Gylling H, Savontaus E (2017) The metabolic syndrome in mice overexpressing neuropeptide Y in noradrenergic neurons. J Endocrinol 234(1):57–72

    Article  CAS  PubMed  Google Scholar 

  19. Rodrigues L, Crisóstomo J, Matafome P, Louro T, Nunes E, Seiça R (2011) Dietary restriction improves systemic and muscular oxidative stress in type 2 diabetic Goto-Kakizaki rats. J Physiol Biochem 67(4):613–619. https://doi.org/10.1007/s13105-011-0108-0

    Article  CAS  PubMed  Google Scholar 

  20. Tran V, Tindula G, Huen K, Bradman A, Harley K, Kogut K, Calafat AM, Nguyen B, Parra K, Ye X, Eskenazi B, Holland N (2017) Prenatal phthalate exposure and 8-isoprostane among Mexican-American children with high prevalence of obesity. J Dev Orig Health Dis 8(2):196–205. https://doi.org/10.1017/S2040174416000763

    Article  CAS  PubMed  Google Scholar 

  21. Samjoo IA, Safdar A, Hamadeh MJ, Raha S, Tarnopolsky MA (2013) The effect of endurance exercise on both skeletal muscle and systemic oxidative stress in previously sedentary obese men. Nutr Diabetes 3:e88. https://doi.org/10.1038/nutd.2013.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Santos JM, Tewari S, Goldberg AF, Kowluru RA (2011) Mitochondrial biogenesis and the development of diabetic retinopathy. Free Radic Biol Med 51(10):1849–1860. https://doi.org/10.1016/j.freeradbiomed.2011.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vartanian V, Tumova J, Dobrzyn P, Dobrzyn A, Nakabeppu Y, Lloyd RS, Sampath H (2017) 8-oxoguanine DNA glycosylase (OGG1) deficiency elicits coordinated changes in lipid and mitochondrial metabolism in muscle. PLoS ONE 12(7):e0181687. https://doi.org/10.1371/journal.pone.0181687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thanks the National Council for Scientific and Technological Development for the grant support (CNPq-301744/2014-9). Also, we would like Prof. Edésio Fialho dos Rei to provide the PCR equipment and Jefferson Fernando Naves Pinto for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Julia Matzenbacher dos Santos or Sandra Aparecida Benite-Ribeiro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, J.M., de Oliveira, D.S., Moreli, M.L. et al. The role of mitochondrial DNA damage at skeletal muscle oxidative stress on the development of type 2 diabetes. Mol Cell Biochem 449, 251–255 (2018). https://doi.org/10.1007/s11010-018-3361-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3361-5

Keywords

Navigation