Skip to main content
Log in

Purinergic signaling as potential target of thiamethoxam-induced neurotoxicity using silver catfish (Rhamdia quelen) as experimental model

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Thiamethoxam is a broad-spectrum pesticide widely used in agricultural practice throughout the world. Worryingly, this pesticide is considered a potential contaminant on the surface and underground water, being a significant risk to aquatic ecosystems and humans. In this sense, we decided to evaluate the activity of enzymes belonging to purinergic system, which is linked with regulation of extracellular nucleotides and nucleosides, as adenosine triphosphate (ATP) and adenosine (Ado) molecules involved in the regulation of immune and inflammatory responses. Such as the neurotoxic effects of thiamethoxam remain poorly understood, the aim of this study was to evaluate whether purinergic signaling may be considered a potential target of thiamethoxam-induced neurotoxicity in silver catfish (Rhamdia quelen). Brain ectonucleoside triphosphate diphosphohydrolase (ATP as substrate) and 5′-nucleotidases activities were inhibited at 3.75 µg L−1 after 24 h of exposure and at 1.125 and 3.75 µg L−1 after 96 h of exposure compared with the control group. On the other hand, brain adenosine deaminase activity was stimulated at 3.75 µg L−1 after 24 h of exposure and at 1.125 and 3.75 µg L−1 after 96 h of exposure compared with the control group. Brain ATP levels increased at 3.75 µg L−1 after 24 h of exposure and at 1.125 and 3.75 µg L−1 after 96 h of exposure compared with the control group, while the Ado levels decreased. The enzymatic activity of the purinergic signaling did not return to control levels after a 48-h recovery period, revealing the potential neurotoxic effects of thiamethoxam. In summary, the brain purinergic signaling may be considered a potential target for thiamethoxam-induced neurotoxicity in silver catfish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gill JPK, Sethi N, Mohan A, Datta S, Girdhar M (2017) Glyphosate toxicity for animals. Environ Chem Lett. https://doi.org/10.1007/s10311-017-0689-0

    Article  Google Scholar 

  2. Walia S, Saha S, Tripathi V, Sharma KK (2017) Phytochemical biopesticides: some recent developments. Phytochem Rev 16:989–1007

    Article  CAS  Google Scholar 

  3. Watson FL, Schmidt H, Turman ZK, Hole N, Garcia H, Tilghman J, Fradinger EA (2014) Organophosphate pesticides induce morphological abnormalities and decrease locomotor activity and heart rate in Danio rerio and Xenopus laevis. Environ Toxicol Chem 33:1337–1345

    Article  CAS  PubMed  Google Scholar 

  4. Sabae SZ, El-Sheekh MM, Khalil MA, Elshouny WAE, Badr HM (2014) Seasonal and regional variation of physicochemical and bacteriological parameters of surface water in El-Bahr El-Pharony, Menoufia, Egypt. World J Fish Mar Sci 6:328–335

    CAS  Google Scholar 

  5. Barganska Z, Slebioda M, Namiesnik J (2013) Pesticide residues levels in honey from apiaries located of Northern Poland. Food Control 31:196–201

    Article  CAS  Google Scholar 

  6. Tomizawa M, Casida JE (2005) Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu Rev Pharmacol Toxicol 45:247–268

    Article  CAS  PubMed  Google Scholar 

  7. Zhao XP, Wu CX, Wang YH, Cang T, Chen LP, Yu RX, Wang Q (2012) Assessment of toxicity risk of insecticides used in rice ecosystem on Trichogramma japonicum, an egg parasitoid of rice lepidopterans. J Econ Entomol 105:92–101

    Article  CAS  PubMed  Google Scholar 

  8. Yang H, Liu H, Hu Z, Pang H, Yi B (2014) Consideration on degradation kinetics and mechanism of thiamethoxam by reactive oxidative species (ROS) during photocatalytic process. Chem Eng J 245:24–33

    Article  CAS  Google Scholar 

  9. Stoyanova S, Yancheva V, Iliev I, Vasileva T, Bivolarski V, Velcheva I, Georgieva E (2016) Biochemical, histological and histochemical changes in Aristichthys nobilis Rich. liver exposed to thiamethoxam. Period Biol 118:29–36

    Article  Google Scholar 

  10. Yan SH, Wang JH, Zhu LS, Chen AM, Wang J (2016) Thiamethoxam induces oxidative stress and antioxidant response in zebrafish (Danio rerio) livers. Environ Toxicol 31:2006–2015

    Article  CAS  PubMed  Google Scholar 

  11. Rodrigues KJA, Santana MB, Do Nascimento JLM, Picanço-Diniz DLW, Maués LAL, Santos SN, Ferreira VMM, Alfonso M, Durán R, Faro LRF (2010) Behavioral and biochemical effects of neonicotinoid thiamethoxam on the cholinergic system in rats. Ecotoxicol Environ Saf 73:101–107

    Article  CAS  PubMed  Google Scholar 

  12. Chiu GS, Freund GG (2014) Modulation of neuroimmunity by adenosine and its receptors: Metabolism to mental illness. Metabolism 63:1491–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Burnstock G (2016) P2X ion channel receptors and inflammation. Purinergic Signal 12:59–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Idzko M, Ferrari D, Eltzschig HK (2014) Nucleotide signalling during inflammation. Nature 509:310–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797

    Article  CAS  PubMed  Google Scholar 

  16. Senger MR, Rico EP, De Bem Arizi M, Rosemberg DB, Dias RD, Bogo MR, Bonan CD (2005) Carbofuran and malathion inhibit nucleotide hydrolysis in zebrafish (Danio rerio) brain membranes. Toxicology 212:107–115

    Article  CAS  PubMed  Google Scholar 

  17. Bernier LP (2012) Purinergic regulation of inflammasome activation after central nervous system injury. J Gen Physiol 140:571–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Borowiec A, Lechward K, Tkacz-Stachowska K, Skladanowski AC (2006) Adenosine as a metabolic regulator of tissue function: production of adenosine by cytoplasmic 5′-nucleotidases. Acta Biochim Pol 53:269–278

    CAS  PubMed  Google Scholar 

  19. Teló GM, Senseman AS, Marchesan E, Camargo ER, Jones T, McCauley G (2015) Residues of thiamethoxam and chlorantraniliprole in rice grain. J Agric Food Chem 63:2119–2128

    Article  PubMed  Google Scholar 

  20. Gonçalves FF, de Matos FS, Zanella R (2013) Determinação de resíduos de herbicidas em águas de lavoura de arroz irrigado empregando extração em fase sólida e cromatografia líquida de alta eficiência com detecção por arranjo de diodos. Scientia Chromatographica 5:89–100

    Article  Google Scholar 

  21. Salbego J, Pretto A, Silva VMM, Loro VL, Lazzari R, Gioda CR, Baldisserotto B (2014) Glyphosate on digestive enzymes activity in piava (Leporinus obtusidens). Cienc Rur 44:1603–1607

    Article  Google Scholar 

  22. Cunha MA, Zeppenfeld CC, Garcia LO, Loro VL, Fonseca MB, Emanuelli T, Veeck APL, Copatti CE, Baldisserotto B (2010) Anesthesia of silver catfish with eugenol: time of induction, cortisol response and sensory analysis of fillet. Cienc Rur 40:2107–2114

    Article  Google Scholar 

  23. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  24. Rosemberg DB, Rico EP, Langoni AS, Spinelli JT, Pereira TC, Dias RD, Souza DO, Bonan CD, Bogo MR (2010) NTPDase family in zebrafish: nucleotide hydrolysis, molecular identification and gene expression profiles in brain, liver and heart. Comp Biochem Physiol B 155:230–240

    Article  PubMed  Google Scholar 

  25. Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for the Ca2+-ATPase activity. Anal Biochem 157:375–380

    Article  CAS  PubMed  Google Scholar 

  26. Giusti G, Gakis C (1971) Temperature conversion factors, activation energy, relative substrate specificity and optimum pH of adenosine deaminase from human serum and tissues. Enzyme 12:417–425

    Article  CAS  PubMed  Google Scholar 

  27. Wen F, Li B, Huang C, Wei Z, Zhou Y, Liu J, Zhang H (2015) MiR-34a is involved in the decrease of ATP levels contents induced by resistin through target on ATP55 in HepG2 cells. Biochem Genet 53:301–309

    Article  CAS  PubMed  Google Scholar 

  28. Baldissera MD, Souza CF, Doleski PH, Moreira KLS, da Veiga ML, da Rocha MIUM., Santos RCV, Baldisserotto B (2018) Involvement of cholinergic and adenosinergic systems o the branchial immune response of experimentally infected silver catfish with Streptococcus agalactiae. J Fish Dis 41:27–32

    Article  CAS  PubMed  Google Scholar 

  29. Streit WJ, Mrak RE, Griffin WS (2004) Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation 1:14

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bours M, Swennen E, Di Virgilio F, Cronstein BN, Dagnelie PC (2006) Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 112:358–404

    Article  CAS  PubMed  Google Scholar 

  31. Keep O, Loss F, Liu P, Kroemer G (2017) Extracellular nucleosides and nucleotides as immunomodulators. Immunol Rev 280:83–92

    Article  Google Scholar 

  32. Nairan S, Kumar B (1992) 5′-nucleotidase activity in certain tissues of the fish Heteropneustes fossilis under toxic stress. Acta Histochem Cytochem 25:169–174

    Article  Google Scholar 

  33. Desrosiers MD, Cembrola KM, Fakir MJ, Sthepens LA, Jama FM, Shameli A, Mehal WZ, Santamaria P, Shi Y (2007) Adenosine deamination sustains dendritic cell activation in inflammation. J Immunol 179:1884–1892

    Article  CAS  PubMed  Google Scholar 

  34. Whiteside TL, Mandapathil M, Schuler P (2011) The role of the adenosinergic pathway in immunosuppression mediated by human regulatory T cells (Treg). Curr Med Chem 18:5217–5223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). B. Baldisserotto received a CNPq research fellowship, and M.D. Baldissera and C.F. Souza received CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) PhD fellowships.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matheus D. Baldissera or Jaqueline I. Golombieski.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The methodology used in these experiments was approved by the Ethical and Animal Welfare Committee of the Universidade Federal de Santa Maria under protocol number 067/2014, following the guidelines stablished by Brazilian Society of Science in Laboratory Animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldissera, M.D., Souza, C.F., Golombieski, J.I. et al. Purinergic signaling as potential target of thiamethoxam-induced neurotoxicity using silver catfish (Rhamdia quelen) as experimental model. Mol Cell Biochem 449, 39–45 (2018). https://doi.org/10.1007/s11010-018-3340-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3340-x

Keywords

Navigation